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Abstract. When writing movement equations in stresses for continuous media, it makes no difference if the 
media is solid or fluid. The fundamental difference in the solution of these two problems relies on the respective 
constitutive laws. For solids shear stresses are related to shear strains and the Navier-Cauchy equation takes 
place, while for fluids, shear stresses are related to the time rate of shear strains, resulting in the Navier-Stokes 
equation. For solid and fluid isothermal problems, the pressure is related to the volumetric change. Based on 
hyperelastic relations, we present an original total Lagrangian numerical approach capable of modeling simple 
large strain viscoelastic solids (Kelvin-like) and free-surface compressive viscous isothermal fluid flows. The 
proposed model is implemented in an in house positional prismatic finite element formulation and is explored in 
numerical examples.  

Keywords: Large strain hyperelasticity, Kelvin-like viscoelasticity, Compressive isothermal fluid flow, Total 
Lagrangian formulation. 

1  Introduction 

The finite element method (FEM) has been very successfully employed to solve solids and structural 
problems since pioneer works [1,2,3,4,5]. Problems involving large strains, large displacements and hyperelastic 
nonlinear constitutive relations, also solved by FEM, bring important contributions to the understanding of 
highly deformable solids as one can see in references [6,7,8,9,10] including plasticity and viscoplasticity.  

Regarding solids, in this study we propose a simple Kelvin-like viscoelastic numerical modeling that does 
not uses the usual Kröner-Lee decomposition [10]. Due to the facility of using arbitrarily unstructured meshes 
and, particularly, due to the simplicity on boundary conditions enforcement over complex boundaries, the FEM 
has been conquering more space in fluid mechanics see [11,12] among others.  

For free surface flow problems it is not possible to apply a pure Eulerian description, in this context, so 
called Arbitrary Lagrangian Eulerian (ALE) stabilized formulations have been developed [13,14]. As an 
alternative to ALE, the Particle Finite Element Method (PFEM) [15] is present, providing a good solution for 
free surface flows with topological changes in the fluid domain. However, this method demands constant 
remeshing and special attention in defining physical properties. 

Here we take advantage of the large strain solid mechanics developments and its tensor algebra (in a more 
fundamental stage) to propose a total Lagrangian formulation to be applied in both Kelvin-like viscoelastic solids 
and isothermal-compressible-viscous free-surface flows with finite distortions and free of topological changes 
(no surface break and no fluid-fluid surface contact). To achieve this goal, we apply the Flory’s [16] 
multiplicative decomposition to split the constitutive law into elastic volumetric, elastic deviatory, viscous 
volumetric and viscous deviatory parts. Representative examples are used to validate the proposed model. 

2  Movement equation – weak form 

The Eulerian movement equation is written as: 

 t b y    
 

 ,       
t   (1) 



Template file for CILAMCE-PANACM-2021full-length paper (double-click here to enter the short title of your paper) 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 
III Pan-American Congress on Computational Mechanics, ABMEC-IACM 
Rio de Janeiro, Brazil, November 9-12, 2021 

in which ij  is the Cauchy stress acting at plane i in direction j,   is the mass density, iy  is the material point 

acceleration in i direction and ib  is the volume force acting in direction i. The second part of equation (1) 

corresponds to three rotation equilibrium equations that are satisfied by the symmetry o the Cauchy stress tensor 
[17]. The first part of Equation (1) contains the 3 translation strong equilibrium equations that will be 
numerically solved in this study. 

There are several ways of writing the weak form of equation (1), see [18,19] when the positional FEM is 
the subject. Here the Virtual Work Principle is employed multiplying equation (1) by an arbitrary variation of 

position iy  as follows: 

   0tw b y y        
  

  (2) 

Integrating equation (2) over the analyzed domain V  and applying the divergence theorem, results: 

   0t

V
W b y y dV         

  
   (3) 

 : ( ) 0t t

V V A V
W y y dV b y dV y n dS y dV                   

     
  (4) 

in which jn  is the j-th component of the unit vector of surface area A . By the Cauchy formula i ji jp n  

(where ip  is the surface force) and, considering the symmetry of the Cauchy stress one writes:  

 : 0
V V A V

W y y dV b y dV p y dS dV                
    

  (5) 

with , ,( ) / 2ij i j j iy y     being the real strain variation (Eulerian reference), that is usually known in its 

rate version , ,( ) / 2ij i j j iy y      [17]. One may note that in equation (5) the following terms are present: 

 W K P       (6) 

where K  is the kinetic energy, P  is the potential of applied external forces (considered conservative) and   
is the Helmholtz free energy for isothermal states that includes, in this study, the strain energy density and the 
viscous dissipation. Moreover, equation (5) is the weak form of the movement equation (or dynamic 
equilibrium) of a continuum media in the Eulerian description. 

I order to write the Lagrangian version of equation (5) one uses the continuity theorem and the equivalence 
of the internal virtual work, i.e.: 

 
0

0 0.
V V

y y dV y y dV     
  
  ,     : :S E    (7) 

in which E  is the Green-Lagrange strain, S  is the second Piola-Kirchhoff stress and 0  is the mass density 

regarding the initial volume 0V . Introducing equations (7) into equation (5) results: 

 
0 0 0 0

0
0 0 0 0 0: 0

V V A V
W y y dV b y dV p y dS S E dV               

    
  (8) 

The way the continuum will behave depends upon the constitutive model applied to find the seconds Piola-
Kirchhoff stress. 
 It is necessary to recall some large strain relation as [17]: 

 
tC A A  ,     1

2
E C I     and    

1 tA S A
J

     (9) 

where A  is the gradient of the change of configuration function (deformation gradient), J  its determinant, C  

is the right Cauchy-Green stretch tensor  and I  is the second identity tensor.. 

3  Flory decomposition and hyperelasticity 

The right Cauchy-Green stretch tensor (equation (9)) is decomposed into its isochoric and volumetric parts 
as proposed by Flory [16]. One starts defining  

 
ˆA A A  ,    1/3ˆ ˆA J I Det A J       1/3 1A J A Det A    (10) 

Applying equation (10) in equation (9) results the isochoric part of the stretch as: 

 
2/3 tC J A A   (11) 
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where ( ) 1Det C  . The volumetric part is defined imposing expression (10) in (9), i.e.: 

 2/3ˆ ˆ ˆtC A A J I    (12) 

in which 2ˆ( ) ( )Det C J Det C  . 

Multiplying equations (11) and (12) one recovers the Cauchy-stretch tensor, completing the description. 

 
ˆ ˆC C C C C    . (13) 

For hyperelastic materials, the Helmholtz free energy is written as a sum of scalar potentials depending 
upon the invariants of the isochoric and volumetric parts of the cauchy-Green stretch tensor, as: 

 
1 2

1 2( ) ( ) ( )vol iso isoJ I I         or simply   
1 2J       (14) 

in which 1I  and 2I  are the first and second invariants of the isochoric part C  and J  is the third invariant of the 

volumetric part Ĉ . Using the concept of energy conjugate, : / :S E E E        the second Piola-

Kirchhoff stress can be written as: 

 

1 2J

elasS
E E E E

      
   
   

     or simply   1 2J
elasS S S S    (15) 

it is important to mention that, for elastic applications, this is the stress placed in equation (8).  
Without loss of generality, in this study we adopted the potentials proposed by [20,21]:  

 
 2 2

2
2

8
J n nK

J J
n

          1
1 3

4

G
I         2

2 3
4

G
I    (16) 

in which K  is the bulk modulus, G  is the shear modulus and 0n   helps to control the volumetric stiffness 
for large strains. Using the chain rule over equation (15) one writes: 

 

J JJ
S

J E J

   
 
  

E      1 11

1

I
S

I E J

   
 

  
E     and  2 22

2

I
S

I E J

   
 
  

E  (17) 

For which the strain directions are given by: 

1J J
JC

E


 


E , 1 2/3 1 2/32
( ) 2

3
J Tr C C J I    E ,   2 4/3 1

2

2
2 (C) I C

3
tJ C I Tr      

 
E  (18) 

 Applying equation (9) it is easy to show that the Lagrangian stress components  1 2, ,JS S S  of 

equation (17) correspond exactly to the Cauchy stress components.
 
 1 2, ,vol iso iso   , which opens the 

possibility the following viscous stress.  

4  The viscous stress 

 The primary idea to extend the hyperelastic model to incorporate viscosity in equation (1) would be 
assuming that the time rate of the split strain directions of equations (18) would suite a constitutive relation, i.e.: 

 
* 1 2

4 4 4
vol iso iso

vis

K G G
S     E E E  (19) 

 However, a simple time derivatives of volumetric and isochoric directions do not preserve direction. 

Thus, *
visS  serves only as an inspiration to the following developments. Inspired in equation (19), in order to 

keep isotropy, a general viscous virtual work variation is given by: 

 

1 2( ) 1 11 1 1 2 2
1 1 1 2 2 2 :

4 4 4 4 4
i i

i

GK dJ dI K J G I G I
J I J J I I I I E

dt dt E E E

 
           

        
 

 

(20) 

resulting the following expression for the second Piola-Kirchhoff viscous stress: 

 

1 21 11 1 21 2
1 1 1 2 2 24 4 4

vol iso iso
vis

K G G
S J J I I I I       E E E

 
(21)  

in which K  is the fluid volumetric viscosity [22] and iG  are shear (isochoric directions 1 and 2) viscosities. In 

order to be coherent with the viscosity understanding we assume 1 2G G G  . Adopting the viscous 
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parameters 1   and 1 2 1/ 2   , Newtonian fluids and a simple Kelvin-Voigt visco-hyperelasticity are 

reproduced. Notice that, as the strain rate is written as function of dimensionless scalars (strain invariants) any 

value of   and i  can be adopted resulting in different viscous behavior. When these parameters are null, 

logarithm viscosity is assumed.  
 As we are interested in general numeric solution, one applies a finite difference scheme as: 

1 2(1) 1 (1) (2) 1 (2)1 11 1 21 1 2
1 1 2 24 4 4

s s s svol iso isos s
vis

I I I IK J J G G
S J I I

t t t
   

  
   
 

  E E E  (22) 

in which 1s   represents the current time. From this point one applies the usual position based FEM procedure 
to assemble the solution process. In short, the proposed model is assembled in equation (8) by: 

 elas visS S S 
 

(23) 

5  Examples 

5.1 Dam rupture - fluid 

The present example is based on the experimental work of reference [23], reproduced numerically by 
[24,25] using an ALE fluid formulation. The analyzed problem is a dam initially with width W  and height H , 
filled with fluid initially at rest. The dam suffers a subtle disrupt at the right wall (Gate), see Fig. 1. This problem 
is considered a first benchmark to test free surface flows solvers. The geometric and physical non-dimensional 

properties are [25]: 0.35W  , 0.70H  , 1g  , 1  , 310G    . As reference [25] treats the fluid 

as incompressible we adopted a high value for the bulk modulus ( 92.15 10K   ) to check the formulation 
overall behavior. 

  

(a) Initial position (b) Flow 

Fig. 1 – Analyzed problem 

Fig. 2 shows the various adopted meshes, with number of nodes and element order. The elements are 
3D prismatic with unitary thickness and linear approximation in this direction. Both, vertical and horizontal 
walls are slip walls and the adopted non-dimensional time step is 42.5 10 . The analysis is carried for 6700 time 
steps with the maximum of 3 iterations at each time. 

    
(a) 38 - Cubic (b) 324 - Cubic (c) 392 – Cubic (d) 3004 - Linear 

Fig. 2 - Definition of used meshes - number of elements and basis aproximation 

In a first analysis stage, with the intact reservoir, the water is allowed to conform to meet the initial 
hydrostatic stress distribution. In the second stage, the right side wall (gate) is instantly removed and the fluid is 

 

H

W

free surface

slip

slip

Gate

 

L

free surface



F. Author, S. Author, T. Author (double-click to edit author field) 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM 
Rio de Janeiro, Brazil, November 9-12, 2021 

free to flow. We compare the obtained results to the experimental values of [23]. The dimensionless time used 
by the references to make graphics is obtained by * 2 /t t g W . 

 

Fig. 3 – Relative enlargement of the fluid base along time. 

Only the linear approximation, fig.3, presents results not so close to the experimental values. 

5.2 Viscoelastic sandwich circular plate - solid  

 A simple supported circular plate with radius 1R m  and thickness 3t cm  is subjected to a 

transverse uniform loading. Only 1/ 4  of the structure is modeled using 300 prismatic finite elements with cubic 
approximation parallel to the plate surface and linear along thickness, totalizing 3 unitary layers, see Fig. 4. The 

simple support condition is applied at nodes of the bottom face. The load 3
3 5000 /b kN m  is applied as a 

volume force on the superior layer of the plate. When viscosity is considered we used 1 2 1/ 2   , i.e., 

Kelvin-Voigt-like viscoelastic model. Three situations are considered: 
(i) Only to verify the discretization, the three layers are considered elastic (steel) with properties: 

200E GPa  and 0.25   that corresponds to 133K GPa  and 80G GPa . For this case the 

achieved central transverse displacement is 0.7043w cm , 2.9%  greater than the Kirchhoff kinematics 

analytical solution that is 0.684kw cm . This result is expected as the adopted solid element is more flexible 

than the Kirchhoff kinematics. 
 

 
Figure 4 - Discretization, boundary conditions and transverse displacement max( 0.7043 )w cm  

 
(ii) Keeping the loading of case (i), the material of the central layer is substituted by Polypropylene with the 
elastic properties [26] 1.088E GPa  and 0.49   that correspond to 18.13K GPa  and 

0.365G GPa . The adopted shear viscosity property is 6.756G GPa s  . The central displacement for 

the elastic and viscoelastic cases are shown in figure 5, being the maximum elastic displacement 
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max 0.7432w cm , 5.52%  grater then the steel case (i). We used 100 time steps of 0.01t s   for the 

viscoelastic analysis. 

 
Figure 5 - (a) Elastic vertical displacement of sandwich plate, (b) Viscoelastic displacement at the plate center. 

 

(iii) Considering the steel density 37000 /steel kg m   and the Polypropylene 3910 /pol kg m  , we 

perform a dynamic analysis considering the same load (suddenly applied). The central displacement along time 
is compared with the elastic result of case (ii) at figure 6. We used 500 time steps of 0.01t s  . 

 
Figure 6 - Vertical displacement along time in a dynamic analysis 

 
 As one can see by this example, the formulation is capable to model general structures even using this 
simple viscoelastic model, i.e., the Kelvin-Voigt-like model 

6  Conclusions 

This work shows an alternative unified constitutive model for simple Kelvin-Voigt solids and isothermal free-
surface compressive viscous flows. The formulation is presented using hyperelastic considerations and 
successfully implemented in a total lagrangian position based finite elements. Examples demonstrate that the 
formulation presents very good results for the proposed applications. 
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