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José Lourenço Kelmer Street, São Pedro, 36036-900, Minas Gerais/Juiz de Fora, Brazil
araujo.alexandre@engenharia.ufjf.br, juliema.fronczak@engenharia.ufjf.br, karin.kauss@engenharia.ufjf.br
marcelo.monteiro@engenharia.ufjf.br, bruno.porto@engenharia.ufjf.br, gabriel.flores@engenharia.ufjf.br
2Graduate in Civil Engineering, Federal University of Juiz de Fora
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Abstract. The formation of vortex is related to the separation of the boundary layer close to the immersed body,
depending on the pressure distribution. The aeroelastic phenomenon, known as vortex-induced vibration (VIV),
occurs when the shedding frequency of these vortex approaches one of the structures natural frequencies. Its
study is of practical interest in many branches of engineering, such as risers, bridges, and aeronautical profiles.
In this work, the VIV around a circular cylinder was analyzed numerically through CFD (Computational Fluid
Dynamics) simulations. The numerical method is described by solving the incompressible Navier-Stokes equa-
tions in a Lagrangian-Eulerian framework in a two-dimensional geometric model. In this study, the open-source
OpenFOAM® was used. The numerical experiments were carried out in a cylinder with a unit diameter, with
Reynolds number values of 100, 200, and 400, for reduced velocitys Ur from 1 to 13, and a damping rate ranging
from 0 %≤ ξ ≤5%. The movement of the cylinder is described using a mass-spring-damper system. For the cylin-
der movement, the sixDoFRigidDisplacement solver was used and the solution algorithm for pressure-velocity
coupling was the pimpleFoam. The results of the simulations were consistent when compared to the literature. It
is observed that the damping factor affects the responses of the cylinder, depending on the reduced velocity. It
is also observed that the movement of the cylinder significantly affects the flow field, varying parameters such as
Strouhal, drag coefficient, lift coefficient, and pressure on the studied surfaces. Finally, it was concluded that the
results were satisfactory and that the proposed computational model is a useful tool in solving problems involving
the phenomenon of vortex-induced vibration.
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1 Introduction

Understanding the flow around a circular cylinder has been a fundamental challenge for researchers, in large
part due to the complexity and transient nature of the fluid. However, in the last decade, computational resources
have evolved enough that high-resolution solutions for practical engineering have become viable, such as simula-
tion in Computational Fluid Dynamics (Stringer et al., 2014) [1].

The simulation done in CFD software allows to observe the phenomena in a more realistic way, and also
allows the reduction of expenses in relation to experiments because, through CFD, it is possible to evaluate several
tests in simulations for a certain improvement in the process and select only those that get better results to run
(Cóstola and Alucci, 2014) [2].

The study of fluid flow around circular cylinders has been studied over the years. Many experimental and
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numerical works published in the literature on the flow past in cylinders were carried out, due to the great interest
in studying and predicting the flow behavior around the cylinder, due to its wide application in engineering (Palau-
Salvador et al., 2010 ) [3].

Vortex-induced vibration of a circular cylinder in constant flow has been intensively investigated in the last
two decades. Comprehensive reviews of VIV, which seek to understand the relationship between cylinder move-
ment and vortex shedding flow, can be found in many publications, such as Sarpkaya (1979) [4], Bearman (1984)
[5], Brika and Laneville (1993) [6], Sarpkaya (2004) [7], Belloli et al. (2015) [8].

Considering the complexity found in a preliminary research of the object of study, the simplification of the
problem regarding its degrees of freedom is justified. Thus, the circular cylinder at one degree of freedom was
studied.

Initially, the study was carried out with the fixed cylinder, in order to perform a mesh test and, later, simula-
tions of VIV were carried out with the spring-mass and spring-mass-damper systems, using the Unsteady Reynolds
Average Navier-Stokes method (URANS) and, finally, the effectiveness of the executed approach was verified, val-
idating the obtained results comparing them with the available literature.

2 Theoretical basis

2.1 Governing equations in fluid dynamics

An incompressible and viscous flow, with the characteristics of those simulated here, can be described by the
physical and mathematical model of the Navier Stokes equations representing the balance of momentum and by
the equation of the principle of conservation of mass, familiarly known as the equation of continuity:

∇.~v = 0, (1)

ρ
∂~v

∂t
+ ρ∇.~v~v = −∇.p+∇. (¯̄τ) + ρ~g + ~F . (2)

In the equations above, ρ is the density of the fluid; p, the pressure; µ, is viscosity; ~v the velocity field;˜̃τ = µ
[(
∇~v +∇~vT

)]
is the stress tensor; ρ~g and ~F are gravitational and external forces, respectively.

2.2 Vortex-Induced Vibrations Phenomenon

Strouhal proposed in 1878 that the regularity of vortex shedding phenomena can be described in terms of a
dimensionless number:

St =
fsD

U0
(3)

Where St is the Strouhal number; and the fs, D and V0 are, respectively, the frequency of vortex shedding,
the dimension of the body through which the flow passes, and the uniform mean velocity of the flow. Vortex-
induced vibrations result from a very complex phenomenon, as they are inherent to the dynamic characteristics of
the structure such as mass, rigidity, damping, and geometry, but it also depends on the characteristics of the flow
itself, kinematic viscosity and velocity. It is through this fluid-structure interaction that the system vibrates.

In accordance with Blevins (2001) [9], the phenomenon of fluid-structure interaction is characterized as
follows: the flow in contact with the structure exerts a displacement or deformation force, changing its orientation
about the flow. When this change of orientation happens, it can alter the forces exerted by the flow and thus
triggering a self-sustaining process of vibrations. An important characteristic of the phenomenon is the capture
and synchronization of vortex shedding at the structure’s natural flexural oscillation frequency, which occurs in the
speed range for which the vibration amplitudes are greater.

3 Numerical techniques

The simulations were obtained using the OpenFOAM® program (Open Source Field Operation And Manipu-
lation) which works in C++ language for the development of methods for solving continuum mechanics’problems,
as well as CFD.

Discretization of the differential equations was performed by using the finite volume method. The PIMPLE
scheme (Pressure Implicit with Splitting of Operators combined with SIMPLE) technique was used in a transient-
state with an implicit scheme for advancing the time step, which allows explicit relaxations of variables and implicit
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equations; this tool is used to advance the time step, a second-order scheme for solving convective and diffuse
terms.

The movement of the cylinder is described according to a mass-spring-damper system. For the movement
of the cylinder, the solver sixDoFRigidDisplacement was used, and for the solving of moving mesh problems, the
displacementLaplacian solver was used.

4 Results

This section presents the computational domain and boundary conditions. In the sequence, two numerical
examples are presented.

4.1 Computational domain and boundary conditions

In this study, the flow through the cylinder with a circular base was considered for a low Reynolds value.
According to Vikram et al. (2014) [10], the choice of the domain through which the flow passes is still an art
in CFD, whereas only a finite computational domain can be used in numerical simulation. Consequently, it is
important to define the input and output domains far enough away from the main cylinder, so that the boundary
conditions do not introduce any undesirable effects in the main region of interest, ie, around the cylinder.

The domains in this study are shown in Figures 1 and 2. Figure 1 represents the geometry of the cylinder with
a circular base, which has a fixed unitary dimension. Figure 2 shows the mesh around the cylinder. For the entire
outline, the second normal derivative of pressure is given as a reference mean of 0 Pa. All distances presented are
dimensionless by the diameter of the cylinder in order to analyze the effect of the flow on the structure.
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Figure 1. Fluid domain and boundary conditions

Figure 2. Unstructured mesh around cylinder

At the boundaries Inlet, Top and Bottom, uniform flow with unit velocity and zero pressure gradient were
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assumed. In Outlet, the zero pressure and zero velocity gradient condition were applied. On the cylinder walls
Wall, the non-slip condition, and the zero pressure gradient were applied.

4.2 Mesh independence test at static cases

In this section, the main results obtained with the mesh test performed are presented. In it, we sought to verify
and validate the numerical simulations of constant uniform flow around a circular cylinder, with Reynolds ranging
from 100, 200 and 400.

In order to reduce the computational cost, three meshes were proposed. Meshes have a computational domain
of 15 elements horizontal and 10 elements vertical. Table 1 shows the characteristics of these meshes. The results
of Cd, Clrms and St obtained from meshes 1, 2, and 3 of the fixed case simulations, together with the literature
references, are presented in Table 2.

The dimensionless force coefficient, Cd, is used for quantify the resistance of an object to the passage of a
fluid around a geometry, be it cylindrical, rectangular and others. It is a coefficient that does not show a constancy
in its results, because when dimensionless it depends on the Reynolds number and other geometric dimensionless
quantities.

Clrms is a dimensionless coefficient relating the lift generated by a geometry, the dynamic pressure of the
fluid flow, and the associated reference area.

Table 1. Mesh independence test carried out for flow past a circular cylinder at static cases

Meshes Mesh type Elements (h × v) Number of nodes / Elements Aspect ratio Skewness

Mesh 1 Unstructured 15× 10 26786 / 11563 2.62 0.70

Mesh 2 Unstructured 15× 10 60146 / 59391 2.40 0.48

Mesh 3 Structured 15× 10 76680 / 102240 28.0 1.00

The results of the simulations can be seen in Table 2, below.

Table 2. Aerodynamic results

Meshes Re = 100 Re = 200 Re = 400

Cd Clrms St Cd Clrms St Cd Clrms St

Mesh 1 1.3788 0.2443 0.1709 1.4529 0.5092 0.2015 1.5232 0.8151 0.225

Mesh 2 1.3900 0.2423 0.1709 1.3807 0.5005 0.2014 1.4482 0.7853 0.2197

Mesh 3 1.4296 0.2161 0.1709 1.3813 0.4400 0.2075 1.4801 0.7844 0.2319

Literature review

Stringer et al. (2014) [1] 1.4000 0.2400 0.1800 - - - - - -

Junior L. B. (2007) [11] 1.3926 0.2416 0.1700 - - - 1.4403 0.7787 0.2233

Franke et al. (1990) [12] - - - 1.3100 0.6500 0.1940 - - -

Analyzing the results, it is verified that the values Cd, Clrms e St vary with the refinement of the mesh,
and that Mesh 1 (see Figure 2), intermediate, presented results closer to the literature. This, and also its lower
computational cost, were the determining factors in its choice for the VIV simulation.

4.3 Mass-Spring-Damper System

Studies were carried out to investigate the importance of some parameters such as the ratio between the
dominant oscillation frequency f and the natural frequency of the system fs expressed in Figure 3; the maximum
dimensionless amplitude Y of the system shown in Figure 4; the mean of the drag coefficientCd and the fluctuation
of the lift coefficient Clrms both expressed in Figure 5 and 6 respectively. All parameters were analyzed for a
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spring-mass and spring-mass-damping system, with damping rates ξ = 0, ξ = 0.01 and ξ = 0.05, with one
number of Reynolds 400 for all simulations.

0 2 4 6 8 10 12

Vr

0

0.1

0.2

0.3

0.4

0.5

0.6

Y
m

á
x

 = 0

 = 0.01

 = 0.05

Figure 3. Maximum dimensionless amplitude as a
function of the reduced velocity
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Figure 4. Frequency ratio as a function of the re-
duced velocity of the spring-mass-damper system

In Figure 3, where the dimensionless amplitude of the cylinder oscillation as a function of the reduced ve-
locity is represented, it is possible to identify that the amplitude of the cylinder, when 1 < Vr < 2.5, increases
considerably. According to Williamson and Roshko (1988) [13], this response is identified as simple vortices (S),
that is, for each period of oscillation of the cylinder, two vortices are released. Brika and Laneville (1993) [6]
defined the 2S model as the upper branch, that is, for each period of cylinder oscillation, two singular vortices are
released.From the reduced velocity 3.5 < Vr < 8.5, it is observed that after reaching the maximum amplitude
this value gradually decreases. All of this is due to the system’s synchronization and, according to Williamson and
Roshko (1988) [13], the vortices on the mat are also released according to the 2S pattern, but unlike the vortices
released in the previous one. After the reduced velocity Vr = 8, the oscillation amplitude of the system abruptly
changes to the lowest value.

Figure 4 illustrates the relationship between frequencies as a function of reduced velocity. It is verified that
for reduced velocity 4.5 < Vr < 6 and Vr > 9, the frequency is coincident, and it is possible to observe the overlap
between the different damping rates.

It is possible to observe in Figures 3 and 4, that for the reduced velocity, it is verified that the response of
the system with damping of ξ = 0.01 and ξ = 0.05 and the spring-mass system are very similar. This can be
explained by the reason of the high values of spring stiffness and the damping constant of the systems, thus there
is no significant difference in the system with or without damper.
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Figure 5. Mean of the drag coefficient as a function
of the reduced velocity of the mass-spring-damper
system
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Figure 6. Standard deviation of the lift coefficient
as a function of the reduced velocity of the mass-
spring-damper system

In Figure 5, where the average drag coefficient for the mass-spring-damper system is represented, ensure that
for the reduced velocity Vr < 2.5 the average drag coefficient is very similar in the three studied damping rates,
being almost coincident. As mentioned earlier, the spring stiffness constant is too high, making the system very
rigid and resulting in lower oscillation amplitude. From the reduced velocity, Vr = 2.5, it can be verified that the
average drag coefficient of the two systems increased considerably. When the mass-spring-damping system with

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



CFD Applied to the Simulation of the Vibration Phenomenon Due to the Vortex Shedding in a Circular Cylinder

damping rate, ξ = 0.05, approaches the reduced velocity, Vr = 3.5, there is a considerable decrease in the drag
coefficient compared to the system with damping rate, ξ = 0 and ξ = 0.01.

The lift coefficient fluctuation by the reduced velocity is represented in Figure 6 where there is a small
difference for reduced velocity, 2.5 > Vr > 4.5, at the other reduced velocity. Despite the damping rate, the
amplitude of the lift coefficient of the mass-spring and mass-spring-damper system has the same amplitudes.
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Figure 7. Maximum dimensionless amplitude as a
function of the reduced velocity
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Figure 8. Frequency ratio as a function of the re-
duced velocity of the spring-mass-damper system

Figure 7 shows a comparison of the dimensionless amplitude of cylinder oscillation as a function of the
reduced velocity for Reynolds of 100, 200 and 400, for a damping rate of ξ = 0.05. In this comparison, it is
observed that there were points of intersection between 5 > Vr > 5.5 for all Reynolds numbers, and a greater
distance from the Reynolds 400 from the reduced speed of 6.5.

Figure 8 shows the comparison between the frequency ratios as a function of the reduced velocity of the
mass-spring-damper system with different Reynolds numbers. It is possible to identify that there is a f/f∗ = 1
plateau in the Reynolds 100 and 200 responses; however, there is a discrepancy between the Reynolds 400 in
relation to the others. Still in this analysis, it appears that this divergence between the Reynolds numbers is directly
influenced by the reduced velocities in the interval 5.5 > Vr > 5.8, for Reynolds 400, and 5.5 > Vr > 6.5, for
Reynolds 100 and 200.
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Figure 9. Mean of the drag coefficient as a function
of the reduced velocity of the mass-spring-damper
system
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Figure 10. Standard deviation of the lift coefficient
as a function of the reduced velocity of the mass-
spring-damper system

Still, in the analysis of the damping rate ξ = 0.05, Figure 9, the graph shows the results of the drag coefficient
Cd for Reynolds 100, 200 and 400. Note that the coefficients for different reduced speeds did not show uniformity
between the Cd values. It is noteworthy that the reduced speeds directly impacted the results, leading to the
oscillation seen in the graph.

Analyzing Figure 10, the results of the lift coefficient as a function of the reduced velocity in the Reynolds
100, 200 and 400, registered a slight approximation in the Reynolds 200 and 400 for the interval of 2.5 > Vr > 4.5.
Regarding the Reynolds 100 result, the behavior of the graph was very similar, but with lower values. This peak
in system response corresponds to the phase angle change, which affects the vortex pattern released in the wake.
An important observation is the direct influence of the Reynolds number in this analysis. It is observed that as the
Reynolds increases there is a significant variation in the results, therefore, an increasing variation in the results.
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5 Conclusions

The results obtained in the simulation of a flow around a fixed cylinder were the expected ones, however, in
comparison with the literature, the importance of the dimensions of the computational domain is highlighted. The
domain of the meshes used in this study is smaller than those used by other authors, therefore, there is a slight
difference in the results of Cd, Clrms and St.

The results of the flow simulation around an oscillating cylinder were also satisfactory. Through the results
obtained by the mass-spring systems and mass-spring-damper, it is concluded that, for low reduced speeds, the
response of the system is very identical to the response of the fixed cylinder, this in relation to the Cd and Clrms.
This is due to the high value of spring stiffness which makes the system very rigid, which makes the cylinder’s
oscillation amplitude low. Increasing the reduced speed, it is observed that the amplitude of cylinder oscillation
takes on higher values, this response being different from the previous one. This jump in amplitude is due to the
fact that the phase angle changes, causing the vortices released in the wake to be formed and released in a different
way than for lower reduced velocities.
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