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Abstract. The current paper develops a new multi parameter Kirchhoff-Love shell finite element with thickness 

variation able to reliably simulate thin nonlinear shell for static structural boundary value problems. The study is 

a continuation of previous elements developed in Sanchez et al [1] and Costa e Silva [2]. The element has 6 nodes 

and uses penalty (or optionally Lagrange method) to deal with the C1 continuity, which is a kinematical 

requirement of the Kirchhoff-Love shell model. It is also used a nonconform field of an incremental rotation 

variable φΔ (this parameter is firstly introduced in Costa e Silva [2]) to assist with the C1 continuity on element 

edges. As a novelty in this study, the C1 continuity on the edges between elements is not further guaranteed by the 

maintenance of the kinking angle (as done in Viebahn et al [3]) or by the equivalence of 𝜑Δ calculated through 

the displacements and the DoF shared by elements (as done in Sanchez et al [1] and Costa e Silva [2]). Now the 

C1 continuity is achieved by enforcing the transverse shear strain to zero. For the thickness variation, it is 

implemented a double linear non conform field similarly to Pimenta et al [4] to represent the quadratic 

displacement at transverse normal to midplane of the shell. The quadratic displacement field of the mid plane is 

represented as usual by the 6 parameters at the 6 nodes of the element.  
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1  Introduction 

Shell simulation in FEM is an important topic in research due to its application in structural engineering 

(slabs, domes, metal sheet, thin structures, for instance). When simulating very thin structures, one may face 

numerical difficulties with current finite element software. This problem is generally related to numerical unreal 

stiffness of the shell (or thin 3D domain) at finite element level, causing a phenomenon named “locking “. This is 

the main motivation of the development of the current model, and also the search for simplicity. This research is 

the continuation of previous work made by the group (see Sanchez et al [1], Costa e Silva [2], Viebahn et al [3], 

Pimenta et al [4], Campello et al [5] and Pimenta et al.[6]). In this paper, a new method for imposing 𝐶1 continuity 

is used based on the penalty (or Lagrange) of the shell shear strain. 
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2  Model Description 

2.1 Shell Kinematics 

 

Figure 1 - Element Kinematic. Image Source Campello et al. [5] 

The shell is based on Kirchhoff love model (Pimenta et al [6]), consequently some assumptions are made. 

Straight perpendicular lines to shell middle plane remain straight, do not change its length and are always 

perpendicular to the shell in any time (Reddy [7]). 

The shell kinematics is defined by the following parametrization. Figure 1 may be of assistance. An arbitrary 

point in the shell at current time has its position defined by 𝒙 ∈ ℝ3 which may be decomposed in 𝒛 ∈ Ω ⊂

ℝ3(projection in shell middle surface) and 𝒂 ∈ ℝ3 (Perpendicular vector to middle surface). In the reference 

configuration, this same point position is represented by 𝝃 ∈ ℝ3 which is also decomposed in 𝜻 ∈ Ω𝑟 ⊂ ℝ3 and 

𝒂𝒓 ∈ ℝ3. Here, it is assumed an initial plane reference configuration. According to Pimenta et al. [8], curved shells 

may be represented as an initial stress-free deformation. The following applies 

𝝃 = 𝜻 + 𝒂𝒓 , 𝜻 = 𝜉𝛼𝒆𝜶
𝒓 ,   𝜉𝛼 ∈ Ωr and 𝒂𝒓 = 𝜉

3
𝒆𝟑

𝒓 ,   𝜉
3

∈ 𝐻𝑟 . (1) 

One may also define 

𝒙 = 𝒛 + 𝒂 . , 𝒛 = 𝜻 + 𝒖 , 𝒂 = 𝑠𝒆𝟑 , 𝒆𝟑  =  𝑸𝒆𝟑
𝒓  and 𝑸 = 𝒆𝒊 ⨂ 𝒆𝒊

𝒓 . (2) 

A novelty in this research in comparison to previous work (Sanchez et al [1]) is the thickness variation of the 

shell. This is implemented using a new variable 𝑠 which is used to define normal position 𝒂 of a point regarding 

middle plane. Then, one have 

𝑠 =  �̂�(𝜉3, 𝑝, 𝑞) = (1 + 𝑝)𝜉3 +
1

2
𝑞𝜉3

𝟐
 and {

𝑝 = �̂�(𝜉1, 𝜉2)
𝑞 = �̂�(𝜉1, 𝜉2)

. (3) 

With previous definitions, it is possible to define the deformation gradient 𝑭 which is going to be used later 

to define deformation energy and the construct the Finite element. One has 

𝑭 = 𝜕𝒙/𝜕𝜉 =
𝜕(𝒛 + 𝑠𝑸𝒆𝟑

𝒓)

𝜕𝜉𝛼

⨂𝒆𝜶
𝒓 +

𝜕(𝒛 + 𝑠𝑸𝒆𝟑
𝒓)

𝜕𝜉3

⨂𝒆𝟑
𝒓 = 𝒇𝜶⨂𝒆𝜶

𝒓 + 𝒇𝟑⨂𝒆𝟑
𝒓  . (4) 

One may yet define curvature vectors and tensor as 

𝑲𝜶 = 𝑸,𝜶𝑸𝑻 

𝜿𝜶 = axial(𝑲𝜶) , 
and 

𝜿𝜶 = 𝜞𝛽𝒖,𝛽𝛼 , 

𝚪1 = (𝒆1 ⋅ 𝒛,1)
−1

[Skew(𝐞1) − (𝐞1 ⋅ 𝒛,2)(𝒆2 ⋅ 𝒛,2)
−1

(𝐞1⨂𝒆3)]   

𝚪2 = (𝒆2 ⋅ 𝒛,2)
−1

 (𝐞1⨂𝒆3) . 

(5) 

Previously, we have 



Matheus L. Sanchez, Catia C. Silva, Paulo M. Pimenta 

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

𝒇
𝜶

= 𝒛,𝜶 + 𝑠,𝛼𝑸𝒆𝟑
𝒓  +  𝑠𝑸

,𝛼
𝒆𝟑

𝒓 = 𝒛,𝜶 + 𝑠,𝛼𝒆𝟑 + 𝜿𝜶 × 𝒂 and 𝒇
𝟑

= 𝑠,3𝑸𝒆𝟑
𝒓  . (6) 

Defining the Back-rotated counterparts of F and strains, we have 

𝑭𝑟 = 𝑸𝑻𝑭 = 𝑰 + 𝜸
𝛼
𝑟 ⨂𝒆𝛼

𝑟 + 𝜸
33
𝑟 ⨂𝒆3

𝑟  and {
𝒆𝛼

𝑟 + 𝜸𝛼
𝑟 = 𝑸𝑻(𝒛,𝜶 + 𝑠,𝛼𝒆𝟑 + 𝜿𝜶 × 𝒂)

𝒆3
𝑟 + 𝜸33

𝑟 = 𝑸𝑻(𝑠,3𝒆𝟑)
. (7) 

Then, consequently we have the strains at current and reference configurations defined by  

{
𝜸𝛼

𝑟 = 𝜼𝛼
𝑟 + 𝒌𝛼

𝑟 × 𝒂𝑟

𝜸33
𝑟 = (𝑠,3 − 1)𝒆3

𝑟  

 

{
𝜸𝛼 = 𝜼𝛼 + 𝒌𝛼 × 𝒂

𝜸33 = (𝑠,3 − 1)𝒆𝟑
 

and 

𝜼
𝛼
𝑟 = 𝑸𝑇𝒛,𝛼 + 𝑠,𝛼𝒆3

𝑟 − 𝒆𝛼
𝑟  

𝜿𝛼
𝑟 = 𝑎𝑥𝑖𝑎𝑙(𝑸𝑇𝑸

,𝛼
) 

 

𝜼𝛼 = 𝒛,𝛼 + 𝑠,𝛼𝒆𝟑 − 𝒆𝛼 

𝜿𝜶 = 𝑎𝑥𝑖𝑎𝑙(𝑸
,𝜶

𝑸𝑻) . . 

(8) 

2.2 Weak form of equilibrium and constitutive equations 

The shell finite element model developed in this paper uses the virtual work theorem, then the following 

applies: 

𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 − 𝛿𝑊𝑒𝑥𝑡 = 0 , ∀𝛿𝒖 and 

𝛿𝑊𝑖𝑛𝑡 = ∫ 𝑷: 𝛿𝑭𝑑𝑉
𝛣

 =  ∫ (𝝈𝜶
𝒓 ⋅ 𝛿𝜺𝜶

𝒓 )𝑑Ω𝑟

Ω𝑟
 

𝛿𝑊𝑒𝑥𝑡 = ∫ �̅� ⋅ 𝛿𝒙𝑑𝐴
𝜕Β

+ ∫ �̅� ⋅ 𝛿𝒙𝑑𝑉
𝛣

 . 
(9) 

For convenience, 𝝈𝜶
𝒓  and 𝜺𝜶

𝒓  are defined by 

𝝈𝜶
𝒓 = [𝒏𝛼

𝑟 𝒎𝛼
𝑟 ]𝑇   and 𝜺𝜶

𝒓 = [𝜼𝛼
𝑟 𝜿𝛼

𝑟 ]𝑇 . (10) 

The equations above represent the balance of virtual work of external and internal forces (δw𝑒𝑥𝑡 and δw𝑖𝑛𝑡), 

and  𝜿𝛼
𝑟  and 𝜼𝛼

𝑟   are Back-rotated curvature vector and membrane strains. Also, 𝒕 and 𝒇 are the boundary forces 

and 𝒏𝛼
𝑟  and 𝒎𝛼

𝑟  as Back-rotated Forces and moments per unit length. 

The model is developed so far for an elastic material, which the following strain energy function applies 

𝜓 =
1

2
𝜆 (

1

2
(J2 − 1) − 𝑙𝑛(J)) +

1

2
𝜇(𝐼1 − 3 − 2𝑙𝑛(J)) . (11) 

In the equation 𝜓(𝑭) is Helmholtz free energy, 𝑪 = 𝑭𝑇𝑭 is deformation Cauchy-Green (right) tensor, λ and 

μ are Lamé coefficients and 𝐼𝑖  are the invariants of the Cauchy-Green tensor defined by 

𝐼1 = 𝑡𝑟 𝑪 = 𝒇𝑖 ⋅ 𝒇𝑖 , 𝐼2 = 𝑡𝑟[𝐶𝑜𝑓 𝑪] = 𝒈𝑖 ⋅ 𝒈𝑖 , 𝐼3 = det 𝑪 = J2 = (𝒇1 ⋅ (𝒇2 × 𝒇3))
2

 . (12) 

2.3 Finite element definition 

 

Figure 2 - Element field variables 
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Figure 2 represents the finite element and its field variables. It is a 6-node triangle with a standard quadratic 

displacement field. There are 3 scalar rotation parameters (𝜑Δ
(4)

, 𝜑Δ
(5)

, 𝜑Δ
(6)

) defined on the middle sides used for 

enforcing 𝐶1continuity due to Kirchhoff-love hypothesis. Also, on the middle side nodes,  𝑝 and 𝑞 are defined to 

allow thickness variation of the shell similarly to Pimenta, P. M et al [4].  

2.4 Enforcement of C1 Continuity 

Due to Kirchhoff-love kinematical hypothesis, one may notice that the shear strain in any point on the middle 

plane of the shell is equal to zero. Inside the element it is guaranteed checking equation (8) 

𝜼
𝛼
𝑟 ⋅ 𝒆3

𝑟  =  (𝑸𝑇𝒛,𝛼 + 𝑠,𝛼𝒆3
𝑟 − 𝒆𝛼

𝑟 ) ⋅ 𝒆3
𝑟 = 0 and 𝜼𝛼 ⋅ 𝒆𝟑 = (𝒛,𝛼 + 𝑠,𝛼𝒆𝟑 − 𝒆𝛼) ⋅ 𝒆𝟑 = 0.  (13) 

However, the continuity has been not guaranteed so far between adjacent elements. For this reason, 𝜑Δ is 

implemented. One must make sure that both adjacent elements have compatible displacement fields in a way that 

the transverse shear strains remain equal to zero. This rotational-related variable will be used to build an unknown 

rotational tensor 𝑸∆ which is applied to an existing known rotational field 𝑸i to create an end-of-step rotational 

tensor 𝑸i+1 = 𝑸∆𝑸i. One can notice that so far there is no mechanism to enforce that 𝑸i+1 will make the end-of-

step transversal strain 𝜼𝛼 ⋅ 𝒆𝟑 to be equal to zero. This may be understood because with the kinematical 

definitions of the shell model, 𝑸i+1 is no further defined as a function only of the displacements and enforced as 

perpendicular to the mid plane (as done in Matheus et al. [1]). Now, 𝑸i+1 is function of 𝜑Δ and may create a state 

with transversal shear strain. Here the penalty method (or Lagrange multiplier) may be applied internally to the 

element to enforce the transversal shear strain to zero maintaining the Kirchhoff-love kinematical model. Using 

the new DOF, the system of both adjacent elements will be forced to use the same 𝜑Δ variable and applying the 

penalty (or Lagrange), the system will be forced to adjust (numerically solving the system of equations) the 

unknown displacements to have the zero-transversal shear while keeping compatible rotational field. 

Considering the share of 𝜑Δbetween adjacent elements, we have (as done in Costa e Silva [2]) 

𝛂∆ = ‖𝒆3
𝑚‖−𝟐(𝒆3

𝑖 × 𝒆3
𝑖+1) + 𝜑Δ‖𝒆3

𝑚‖−𝟏𝒆3
𝑚   and �̂�(𝛂𝚫) = (𝐈 −

1

2
𝐀𝚫)

−1

(𝐈 +
1

2
𝐀𝚫) (14) 

with 𝐀Δ = 𝑠𝑘𝑒𝑤(𝛂∆). 

Finally, it is used Penalty (or Lagrange multiplier) to enforce 𝜼𝛼
𝑟 ⋅ 𝒆3

𝑟 = 0 (or 𝜼𝜶 ⋅ 𝒆3 = 0) at end of next 

iteration step. Consequently, we have to enforce 

𝐐𝚫𝒆3
𝑖 ⋅ 𝒛,𝛼

𝑖+1 = 0 or 𝐐𝚫𝒆𝛼
𝑖 ⋅ 𝐞3

𝑖+1 = 0 (15) 

to zero. 

3  RESULTS 

The finite element developed here has been implemented in AceGen / AceFEM platform (see Korelc and 

Wriggers [9]). It has been tested for some numerical examples to test it and to compare with other shell elements 

and commercial code (Autodesk Nastran CTRIA6 [10]). In this paper, it is presented the results for 3 numerical 

examples: Square simply supported Flat Plate subject to uniform load, Cantilever Beam and Cubic Stretching. 

3.1 Square Flat Plate 

In this example, the shell element has been tested to identify bending locking for a single linear step for 

different thickness. The square flat plate simple supported on 4 sides is defined with side 𝐿 = 2𝑚, Young 

modulous E =106 𝑘𝑁

𝑚2, Poisson ratio 𝜈 = 0,3 and Center Down Pressure “𝑞” proportional to: 𝑞 ≈ ℎ3, and thickness 

ℎ. 
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Figure 3 - Square Flat Plate. Source Campello et al [5] 

 

Figure 4 - Square Flat Plate results. (a) Campello et al. [5]; (b) current element. 

The element was able to simulate for considerable thin shells with reliable results. Figure 4 shows the 

normalized results (numerical results divided by analytical Kirchhoff solution, see Young et al. [11]) for different 

meshes and thickness. It is important to mention that the element did not present locking behavior up to ℎ/𝐿 =

10−7. As a comparison, Campello et al. [5] had Non-locking behavior up to ℎ/𝐿 = 10−5. 

3.2 Cantilever Beam 

In this classical numerical example, a cantilever beam is subject to a bending force. See Figure 5. The beam 

has L (beam length)  = 2400 mm, h(cross section height)  =  100 mm, b(cross section width)  =

 11,64 mm, E(Elastic Modulus)  = 210 ⋅ 109 Pa, ν (Poisson Ratio) = 0.3125. The Vertical applied force is 

𝐹𝑦 = 10000𝑁 and horizontal lateral force 𝐹𝑥 = 𝐹𝑦 ⋅ 10−4. 

  

Figure 5 - Cantilever Beam 
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Figure 6 - Cantilever Beam (Non-Linear). Vertical and Horizontal displacement. 

Figure 6 plots displacement of the free point of the cantilever beam. It can be observed that Nastran model 

could no converge for large loads (large displacements and rotations), and the results of the model in this article 

performance very similar to previous results (Sanchez et al [1]). 

3.3 Cubic Stretching 

This example is performance to study the capacity of the shell model to deal with stretching and consequently 

with thickness change. Here, a cube is approximated by the shell, considering side 𝐿 = ℎ = 1𝑚, Elastic Modulus 

𝐸 = 105, Poisson Ratio 𝜈 = 0.2, 0.4, 0.499 and stretching force 𝑃 = 0~200000𝑁. 

 

 

Figure 7 - Cubic Stretching. Image Source Pimenta et al.[4] 

  

Figure 8 - Width and Thickness vs Poisson Ratios and loads. (a) Pimenta et al.[4] (b) Current shell model. 

Figure 8 represents the stretching of the cube. Both width and thickness were evaluated as expected and 

similar to previous simulation (Pimenta et al.[4]). 
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4  Conclusions 

The research results obtained so far demonstrates the reliability of the element developed. The authors believe 

that the simplicity of the kinematic in this geometrically exact nonlinear model, together with its capacity to 

simulate thin structures in large displacements, large rotations and for possibly different material models, makes 

this element appealing for further development. In further research yet to come, the authors are going to enhance 

the element for dynamic simulations and for non-isotropic materials (for example composites). 
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