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Abstract. The elastoplastic torsion problem (ETP) consists of defining portions of elasticity and plasticity in the
cross section of a bar twisted by terminal couples. This problem can be modelled by using variational principles
and is considered an obstacle type problem by means of the membrane analogy. At points where the membrane
touches the obstacle, permanent deformations ensues. Thus, the problem can be rewritten as a mixed complemen-
tarity problem and solved using the FDA-MNCP algorithm (Feasible Directions Algorithm for Mixed Nonlinear
Complementarity Problem). In this work, the objective is to analyze the influence of the shape of the cross section
in the resulting regions of plasticity. Some numerical simulations were made for different rectangular proportions,
with the fixed area, to observe how the shape of these regions varies and the percentage they represent in relation
to the total area. In addition, the plastic portions were compared for three sections of the same area and material,
in the formats: disk, square and L.

Keywords: Obstacle problem, Elastoplastic torsion, Complementarity problem, Finite difference method.

1 Introduction

As a result of applied loading’s, elastic solids will change shape or deform. The elastoplastic material behav-
ior is defined by the strain decomposition in the elastic and plastic parts. Thus, the elastoplastic torsion problem
(ETP) consists of defining portions of elasticity and plasticity in the cross section of a bar twisted by terminal cou-
ples. Originally, the set of admissible displacements is given in terms of gradient norm for displacements (K∇). In
this case, the numerical resolution has been more explored using the finite element method, as can be seen in Dolan
et al. [1]. The equivalence proved by Brezis and Sibony [2] was a milestone in the area as it enabled the rewrite of
the ETP to a more convenient set Kd, using the distance to the boundary (d). The problem in this formulation is
especially appropriate for a numerical solution by using the finite difference method (FDM), because is more easy
to implement numerically. With this approach, the ETP can be regarded as an obstacle type problem by means of
the membrane analogy.

The objective of this work is to analyze the influence of the cross section in the resulting plastic zones. All the
simulations were performed for two cases: (i) different rectangular sections with the same area; (ii) circular, square
and L-sections with the same area. The elastoplastic torsion problem is described as a mixed complementarity
problem, which is solved by using FDA-MNCP (feasible directions algorithm mixed nonlinear complementarity
problems), proposed by Gutierrez et al. [3]. Thus, the results obtained allow to analyze the boundary of the plastic
zones and the percentage they represent in relation to the total area.

2 Elastoplastic torsion problem

Consider an elastic cylinder bar, with a simply connected cross section Ω ⊂ R2, subjected to a torsion
applied at the ends and with the lateral boundary stress-free. This cylindrical body is a prismatic bar isotropic and
homogeneous, with constant cross section. Under torque T, the displacement of a generic point P in the xy-plane
will move to location P ′, causing the line segment OP to rotate at an angle β. The displacement of each point of
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the twisted bar, in the xy-plane, can thus be determined as:

wx = −rβ sin (α) = −βy, wy = rβ cos (α) = βx, (1)

where r = ‖−−→OP‖ and α is the angle between the line segment OP and the x-axis. Using the assumption that the
section rotation is a linear function of the axial coordinate, we can assume that the cylinder is fixed at z = 0 and
take β = θz, where θ is the angle of twist per unit length. Therefore:

wx = −θyz, wy = θxz, wz = θζ(x, y), (2)

where ζ = ζ(x, y) is a function that describes the out-of-plane displacement.
Thus, the following stress tensor is obtained:

σ =


0 0 µθ

(
∂ζ
∂x − y

)
0 0 µθ

(
∂ζ
∂y + x

)
µθ
(
∂ζ
∂x − y

)
µθ
(
∂ζ
∂y + x

)
0

 , (3)

it means, only τxz = τzx and τyz = τzy are nonzero. Applying these stresses in the equilibrium equations with
zero body forces ∂τxz

∂x +
∂τyz
∂y = 0. So, taking

τxz =
∂ϕ

∂y
, τyz = −∂ϕ

∂x
, (4)

the equilibrium is satisfied, where ϕ = ϕ(x, y) is the Prandtl stress function. Poisson’s equation is also satisfied
by ϕ. Indeed, as τxz = µθ

(
∂ζ
∂x − y

)
and τyz = −µθ

(
∂ζ
∂y + x

)
, one has:

∆ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
= −2µθ. (5)

Also, the stress-free condition on the lateral boundary of the cylinder, can be rewritten as:

dϕ

ds
= 0, (6)

where s denotes the curvilinear abscissa. So, ϕmust be constant along ∂Ω because Ω is a simply connected section
and eq. (4) defines ϕ inside a constant, one takes ϕ = 0 in ∂Ω.

The effective or von Mises stress will be used, considering a elastic-perfectly plastic material. According to
Sadd [4], this stress is given by the expression:

σe = 1√
2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6(τ2

xy + τ2
yz + τ2

zx)
]1/2

. (7)

In ETP, only τxz and τyz are nonzero, thus eq. (7) can be rewritten as:

σe =
√

3(τ2
yz + τ2

zx) =
√

3||∇ϕ||. (8)

Let γ′ be the yield limit (threshold of plasticity) for a material, taking γ =
√

3
3 γ
′ the cross section is divided into

two regions:

P = {||∇ϕ|| = γ} = {plastic zone} , E = {||∇ϕ|| < γ} = {elastic zone} . (9)

2.1 Variational inequality formulation

As detailed in Rodrigues [5], the complementary energy involved in the elastoplastic problem is given by:

J(ϕ) =
l

2µ

∫
Ω

||∇ϕ||2 dxdy − 2θl

∫
Ω

ϕ dxdy. (10)

Thus, the principle of minimum complementary energy leads to the variational problem:

ϕ ∈ Kγ : J(ϕ) ≤ J(η) ∀η ∈ Kγ , (11)
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or equivalently:

ϕ ∈ Kγ :

∫
Ω

∇ϕ · ∇(η − ϕ) dxdy ≥ 2µθ

∫
Ω

(η − ϕ) dxdy, ∀η ∈ Kγ , (12)

where Kγ = {η ∈ V : ||∇η|| ≤ γ in Ω, η = 0 on ∂Ω}.
The PTE is a special case of an obstacle type problem, which is an important application of elliptic variational

inequalities and the basis for formulation of many physical phenomena. In its classical form, the obstacle problem
considers an elastic membrane in Ω ⊂ R2 equally stretched in all directions by a uniform tension and loaded by
a normal uniformly distributed force f . Let g(x, y) be the function that prescribes the displacement on the ∂Ω
boundary, the equilibrium position of the membrane can be stated by the Poisson problem:

∆u = −f in Ω,

u = g on ∂Ω.
(13)

This is the simple case, representing a free membrane. Now, one introduces an obstacle d satisfying d ≥ 0 in ∂Ω,
which forces the membrane to lie below the rigid body

{
(x, y, z) ∈ R3 : z ≤ d(x, y)

}
.

Let d : Ω→ R the distance of (x, y) ∈ Ω to the boundary ∂Ω, define:

u = −ϕ
γ
, c =

2µθ

γ
, g = 0, (14)

where θ is the angle of twist per unit length, µ is the modulus of rigidity and γ > 0 is the threshold of plasticity.
With this equivalence the plastic (P) and the elastic (E) zones may also be given, respectively, by:

P = {||∇u|| = 1} = {u = d} , E = {||∇u|| < 1} = {u < d} . (15)

Therefore, from eq. (12) we obtain the following variational inequality:

u ∈ K∇ :

∫
Ω

∇u · ∇(v − u) dxdy ≥ −c
∫

Ω

∇(v − u) dxdy, ∀v ∈ K∇, (16)

where K∇ =
{
v ∈ H1

0(Ω) : ||∇v|| ≤ 1 a.e. in Ω
}

.
To find the solution in K∇ it is necessary to approximate the gradient norm, which can be complex. Then

define a more convenient set Kd =
{
v ∈ K : H1

0(Ω) : v(x, y) ≤ d(x, y) a.e. in Ω
}

and the problem becomes:

u ∈ Kd :

∫
Ω

∇u · ∇(v − u) dxdy ≥ −c
∫

Ω

∇(v − u) dxdy, ∀v ∈ Kd. (17)

The equivalence between eq. (16) and (17) is proved by Brezis and Sibony [2] and Rodrigues [5].

2.2 Mixed complementarity problem

Let F : D ⊂ Rn → Rn × Rm and Q : D ⊂ Rm → Rn × Rm vector functions, the mixed complementarity
problem (MCP) is defined as finding (x, y) ∈ Rn × Rm such that:

x ≥ 0, F (x, y) ≥ 0 and

 x • F (x, y) = 0

Q(x, y) = 0
, (18)

where:

x • F (x) =


x1F1(x)

...

xnFn(x)

 , (19)

represents the Hadamard product.
The eq. (17) leads to the mixed complementarity problem:

−∆u(x, y) + c = 0, if − d(x, y) < u(x, y) < d(x, y),

−∆u(x, y) + c > 0, if u(x, y) = −d(x, y),

−∆u(x, y) + c < 0, if u(x, y) = d(x, y).

(20)
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3 Finite difference model

Solving numerically the PTE as a mixed complementarity problem requires the discretization by using the
FDM of the Laplacian solution. In general, for ∆u = f , one has:

∂2u

∂x2
(xi, yj) +

∂2u

∂y2
(xi, yj) = f(xi, yj), (21)

where u(xi, yj) is the value of the solution at a generic point (xi, yj) of the mesh and i = 0, 1, ..., Nx, j =
0, 1, ..., Ny . Next, this discretization will be presented briefly for rectangular and circular sections. The section in
L can be divided into rectangles, with some peculiarities due to it corners. More details for this case can be seen
in Danelon [6].

3.1 Rectangular cross section

For a rectangular section, the dimensions k1, k2 and the number of mesh points Nx, Ny are variable. The
distance between grid points in the x and y directions is given by hx = k1/(Nx − 1) and hy = k2/(Ny − 1),
respectively. Using the centered difference method, the derivatives are approximated by:

∂2u

∂x2
(xi, yj) ∼=

u(xi + hx, yj)− 2u(xi, yj) + u(xi − hx, yj)
h2
x

, (22)

∂2u

∂y2
(xi, yj) ∼=

u(xi, yj + hy)− 2u(xi, yj) + u(xi, yj − hy)

h2
y

. (23)

i = 1, 2, ..., Nx − 1, j = 1, 2, ..., Ny − 1. Replacing the eq. (22) and (23) in eq. (21), one obtains:

Ui+1,j − 2Ui,j + Ui−1,j

h2
x

+
Ui,j+1 − 2Ui,j + Ui,j−1

h2
y

= fi,j , (24)

where Ui,j denotes the approximate solution of u(xi, yj). For U0,j , Ui,0, UNx,j and Ui,Ny , the Dirichlet boundary
condition holds.

3.2 Circular cross section

Let the disk of radius R Ω =
{

(x, y) : x2 + y2 < R
}

. Applying the polar coordinate transformation x =

r cos θ and y = r sin θ, where r =
√
x2 + y2 and θ = arctan (y/x), then eq. (21) becomes:

∂2u

∂r2
(ri, θj) +

1

r

∂u

∂r
(ri, θj) +

1

r2

∂u2

∂θ2
(ri, θj) = f(ri, θj), 0 < r < R, 0 ≤ θ < 2π. (25)

The eq. (25) has an singularity at the origin caused by the representation of the governing equation in the
polar coordinate system. A simple approach to solve this problem is presented by Lai [7], by manipulating the
grid point locations. The grid is choosen such that the grid points are half-integered in the radial direction and
integered in the azimuthal direction, that is, ri = (i− 1/2)hr and θj = (j − 1)hθ, where hr = R/(Nr + 1/2)
and hθ = 2π/Nθ, i = 1, 2, ..., Nr + 1, j = 1, 2, ..., Nθ + 1.

Using the centered difference method to discretize eq. (25), for i = 2, 3, ..., Nr, j = 1, 2, ..., Nθ, one has:

∆u(ri, θj) ≈
Ui+1,j − 2Ui,j + Ui−1,j

h2
r

+
1

ri

Ui+1,j − Ui−1,j

2hr
+

1

r2
i

Ui,j+1 − 2Ui,j + Ui,j−1

h2
θ

. (26)

The boundary values are given by UNr+1,j = 0 and Ui,Nθ+1 = Ui,1, because U is 2π periodic in θ. At i = 1, the
coefficient U0,j is zero, because r1 = hr/2. Therefore, the scheme does not need any pole condition.

4 Numerical results

The angle of rotation, present in the physical constant c, depends on the shape of the bar. For circular cross
sections, one has:

θ =
T

Jµ
, (27)
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where T is the torque and J = 0.5 · πr4 is the polar moment of inertia. For rectangular sections:

θ =
T

Kab3µ
, (28)

where a and b are the dimensions of the rectangle (with a > b) and K is a coefficient that depends of the ratio
α = a/b. Francu et al. [8] present the following formula to calculate K:

K(α) =
28

π6

∑
i∈N

∑
j∈N

α2

i2j2(i2 + α2j2)
, (29)

NI = {1, 3, 5, 7, ...}. The values of K for some ratios α are in Table 1.

Table 1. The numerical values of β

α 1 1,5 2 3 4 5 6 8 10 ∞

β 0,141 0,196 0,229 0,263 0,281 0,291 0,298 0,307 0,312 1/3

Murakami [9] gives an approximation for the angle of rotation for an L-section of height and width a, with
thickness h, given by:

θ =
3T

2ah3µ
. (30)

The simulations were performed with the MATLAB ®software, using the FDA-MNCP algorithm (proposed
by Gutierrez et al. [3]) to find the eq. (20) solution. For the physical parameters, standard values were adopted
for structural steel named A-36 by ASTM (American Society for Testing and Materials) or MR-250 by ABNT
(Brazilian Association of Technical Standards). According to Hibbeler [10], the modulus of elasticity for this steel
is E = 200GPa, while the modulus of rigidity is µ = 75GPa. The plasticity threshold used is γ = 250MPa,
as defined in NBR 7007:2016, which describes the requirements for the use of carbon steel and high-strenght
low-alloy steel for strutural use.

4.1 Different rectangular proportions

An interesting point of the rectangular case is to analyze how the variation in the proportion interferes in the
plasticity regions. Figure 1 displays the results for different ratios k1/k2 with c = 5 and unit area. N2 = 40 was
fixed and N1 varies proportionally to maintain the degree of refinement. The plastic percentages found were: (a)
23.27%, (b) 20.78% and (c) 15.08%.

Note that the plastic zones flatten towards the largest dimension, while they decrease and even disappear
towards the smallest dimension. As previously shown, c depends on the angle of rotation, which in turn depends
on the shape of the bar and the torque applied. Thus, if c is maintained even with section changes, a torque
adjustment is implicitly imposed so that the resulting angle of rotation is the same. In this case, the torque is
decreasing, which results in this decrease in the plastic regions.

(a) k1/k2 = 1 (b) k1/k2 = 2 (c) k1/k2 = 3

Figure 1. Plastic zones (blue) for rectangular section with fixed area, c = 5

Now the torque will be maintained and c recalculated for each section variation. Considering the physical
parameters, the area of the side square 10 cm is fixed. Let T = 85kNm andN2 = 40, withN1 varying proportion-
ally, the Figure 2 presents the results. The following plastic percentages were obtained: (a) 22.16%, (b) 31.04%
and (c) 40.68%. Comparing the regions obtained with Figure 1, it can be seen how the shape of the section actually
has a huge impact on the angle of rotation. Adjusting c for each ratio change made the regions stay similar.
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(a) k1/k2 = 1; c = 48, 37 (b) k1/k2 = 2; c = 59, 47 (c) k1/k2 = 3; c = 77, 47

Figure 2. Plastic zones (blue) for rectangular section with fixed area, calculated c

4.2 Formats circular, square and L

Figure 3 shows the results for cross sections of unit area in different shapes with fixed c = 10 and the
following parameters (i) Square: k1 = 1 and N = 80, (ii) Disk: r =

√
1/π and Nr = Nθ = 80, (iii) Section

in L: k1 = 0.5, k2 = 0.75, N1 = 33 and N2 = 49. As discussed for the rectangular case, fixing c for different
shapes implies different values of torque. As discussed for the rectangular case, fixing c for different shapes
implies different values of torque. Therefore, a similar example was developed with T fixed and c calculated,
taking the square side 10 cm as a reference for area. The following parameters were used: (i) Square: k1 = 0.1
and N = 80, (ii) Disk: r =

√
0.01/π and Nr = Nθ = 80, (iii) Section in L: k1 = 0.05, k2 = 0.075, N1 = 33

and N2 = 49. The following parameters were used: (i) Square: k1 = 0.1 and N = 80, (ii) Disk: r =
√

0.01/π
and Nr = Nθ = 80, (iii) L-section: k1 = 0.05, k2 = 0.075, N1 = 33 and N2 = 49. Figure 4 shows the results
obtained for T = 200kNm.

(a) Disk (b) Square (c) L-section

Figure 3. Plastic zones (blue) for different shapes with fixed area, c = 5

(a) Disk; c = 100, 53 (b) Square; c = 113, 82 (c) L-section; c = 45, 51

Figure 4. Plastic zones (blue) for different shapes with fixed area, calculated c

Table 2 shows a comparison of the plasticity area for each section, for fixed c and calculated c. There is a
significant variation in the values for each case, but the circular section remains with the highest plastic percentage
and the L-section with the smallest. Comparing the results obtained in Figures 3 and 4, one may observe that the
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adjustment in c due to geometry generates a sharp drop in the size of the plastic regions for the L-section.

Table 2. The plastic percentages for different shapes with fixed area

Cross section Plasticity, fixed c (%) Plasticity, calculated c (%)

Disk 89,69 94,14

Square 58,41 63,77

L 53,95 27,98

5 Conclusions

In this work it was possible to observe how the shape of the cross section influences the plasticity areas. For
the rectangular case, c calculated for the ratio k1/k2 = 3 represents an increase of more than 60% with respect
to the c calculated for a square section of the same area. This reflects in higher plastic percentages, even with
the shape of the regions being similar. As plasticity represents a permanent deformation, in general one wants
the material to remain in the elastic phase. Therefore, as expected, the closer to the ratio k1/k2 = 1, the less the
bar will suffer the effects of torsion. In the comparison between the three bar shapes, the L-section is much more
resistant. However, it is important to highlight that the angle of rotation approximation proposed by Murakami [9]
considers slender bars. For more conclusive results it would be necessary to further investigate the formulation of
the angle θ.
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