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Abstract. In this work, we propose a large strain viscoelastic-viscoplastic constitutive model applied to two-
dimensional finite element analysis of solids. The model is developed in a thermodynamic framework, based
on the multiplicative decomposition of the deformation gradient into elastic, viscous and plastic components.
The viscoelastic part is represented by Zener’s rheological model, and is formulated with an internal variable
approach, with evolution law in terms of the viscous deformations gradient rates. For the viscoplastic part, we
apply a Perzyna-like model, including a large strain generalization of the classical Armstrong-Frederick kinematic
hardening. In order to characterize the proposed constitutive model, we present results of uniaxial relaxation and
creep tests under different analysis conditions, as well as more complex examples showing the potentialities of the
developed framework.
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1 Introduction

Viscoelastic-viscoplastic materials are known for exhibiting rate-dependent behaviour both in the elastic and
plastic stages, as shown in experimental results such as [1, 2] for polymeric materials and [3] for asphalt. In the
context of large strain models, some of the earlier works is due to [4, 5], who proposes two different methods
of coupling viscoelastic and viscoplastic effects, and [6], who developed a generalized constitutive modelling
framework. For a more detailed state of the art review in that regard, one can refer to [7].

In this work, we present a thermodynamically-based viscoelastic-viscoplastic constitutive law based on the
rheological model shown in Fig. 1, and using the concept of multiplicative decomposition [8, 9], commonly
adopted in large strain formulations. The viscoelastic part is represented by a Zener model [10, 11], while the
viscoplastic part is represented by a slider, connected in parallel with a rate-dependent component reproducing the
Perzyna model [12], and a kinematic hardening component reproducing the Armstrong-Frederick model [13, 14].

Figure 1. Rheological model
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2 Kinematics

Based on Fig. 1, we assume that the total deformation gradient (F) can be split into a viscoelastic part (Fve)
and a plastic/viscoplastic part (Fp). Furthermore, the viscoelastic part can be split into a purely elastic part (Fe) and
a viscous part (Fv), and the plastic deformation can be split into a plastic-elastic (Fpe

) and a plastic-inelastic part
(Fpi ). By using the multiplicative decomposition, originally introduced by [8, 9] in the context of elastoplasticity,
we can express the total deformation gradient as

F = FveFp = FeFvFpeFpi . (1)

For each generic component F(·) of the deformation gradient, one can define its associated components of:
Jacobian as J(·) = detF(·); right Cauchy-Green stretch tensor as C(·) = FT

(·)F(·); Green-Lagrange strain tensor

as E(·) = 1
2

(
C(·) − I

)
; velocity gradient as L(·) = Ḟ(·)F

−1
(·) ; and deformation rate as D(·) = sym

(
L(·)

)
=

1
2

(
L(·) + LT

(·)

)
= F−T

(·) Ė(·)F
−1
(·) .

3 Thermodynamics framework

The present constitutive model is thermodynamically-based, meaning that it is derived from the second law
of thermodynamics, expressed in this work as the isothermal Clausius-Duhem inequality dint = S : Ė − ψ̇ ≥ 0,
where dint is the internal dissipation, S is the second Piola-Kirchhoff Stress and ψ is the Helmholtz free energy.
The latter can be taken as the sum of the four spring components represented in Fig. 1, each written in terms of
their respective strain components. Therefore, we can write

ψ = ψve(Eve) + ψe(Ee) + ψkin
pe

(Epe), (2)

ψ̇ =
∂ψve

∂Eve
: Ėve +

∂ψe

∂Ee
: Ėe +

∂ψkin
pe

∂Epe

: Ėpe
, (3)

In this work, we assume that ψve, ψe and ψkin
pe

are isotropic. After performing certain algebraic manipulations
using eq. (3) and the kinematic relations in section 2, the Clausius-Duhem inequality can be written as

dint =

(
S− F−1

p

∂ψve

∂Eve
F−T

p − F−1
p F−1

v

∂ψe

∂Ee
F−T

v F−T
p

)
: Ė+

(
Ce

∂ψe

∂Ee

)
: Lv

+

(
Cve

∂ψve

∂Eve
+ FT

v Ce
∂ψe

∂Ee
F−T

v − Fpe

∂ψkin
pe

∂Epe

FT
pe

)
: Lp +

(
Cpe

∂ψkin
pe

∂Epe

)
: Lpi

≥ 0

(4)

From the arbitrarity of Ė, the non-negativeness of the first term in ineq. (4) can be achieved by setting the
second Piola-Kirchhoff stress as

S = F−1
p

∂ψve

∂Eve
F−T

p + F−1
p F−1

v

∂ψe

∂Ee
F−T

v F−T
p , (5)

and the Clausius-Duhem inequality can be written simply as

dint = Me : Lv +Σ : Lp +Mp : Lpi
≥ 0 (6)

where Σ is called relative stress, and the tensors M(·) are Mandel-like stress measures, defined, respectively, by

Σ = Mve + FT
v MeF

−T
v − Fpe

∂ψkin
pe

∂Epe

FT
pe
, (7)

Me = Ce
∂ψe

∂Ee
, Mve = Cve

∂ψve

∂Eve
, and Mp = Cpe

∂ψkin
pe

∂Epe

. (8)
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4 Evolution laws

In order to fulfill the Clausius-Duhem inequality, one must set appropriate expressions for Lv , Lp and Lpi
,

known as evolution laws. For Lv , we apply the viscous evolution equation of [10] and [11]. For Lp, a finite strain
generalization of the Perzyna model [12] is used. Finally, for Lpi , the Armstrong-Frederick kinematic hardening
model discussed in [13, 14] is applied. By taking into account the kinematic relation L(·) = Ḟ(·)F

−1
(·) , we can also

write the evolution laws in terms of the rates of deformation gradients, resulting in

Lv =
1

η
MD

e ⇒ Ḟv =
1

η
MD

e Fv, (9)

Lp =
⟨Θ⟩
ηp

ΣD

∥ΣD∥
⇒ Ḟp =

⟨Θ⟩
ηp

ΣD

∥ΣD∥
Fp, (10)

Lpi =
⟨Θ⟩
ηp

b

c
MD

p ⇒ Ḟpi
=

⟨Θ⟩
ηp

b

c
MD

p Fpi , (11)

where η is the viscosity parameter, ηp is the plastic viscosity, c is the hardening stiffness, b is a dimensionless
Armstrong-Frederick parameter, and Θ is the so-called overstress of the Perzyna model. The superscript (·)D
denotes the deviatoric part of a tensor, ∥ · ∥ denotes the norm, and ⟨·⟩ denotes the Macauley brackets.

The overstress (Θ) is expressed in terms of the yield function (Φ), and needs to be continuous and convex for
positive values of Φ, and return zero when Φ = 0 [15]. In the present model, the overstress function is given by
Norton’s rule [16]: Θ = (Φ/αp)

m, where αp and m are calibration parameters. Furthermore, Φ is defined by a
von Mises yield criterion, i.e. Φ = ∥ΣD∥ −

√
2/3σY , where σY is the yield stress of the material.

By applying the evolution laws (9), (10) and (11) into ineq. (6), one can easily prove that the Clausius-Duhem
inequality holds. Furthermore, it is possible to verify that the adopted formulation fulfils the property of inelastic
incompressibility, i.e. the inelastic Jacobians Jv , Jp and Jpi

are constant and equal to 1.

5 Numerical implementation

The numerical application of the proposed constitutive model is performed by means of an viscoelastic pre-
diction and viscoplastic correction algorithm. The time integration method applied in the evolution equations
(9)-(11) is the backward Euler method, which is advantageous for its simplicity, but has the disadvantage of pro-
ducing errors regarding the property of inelastic incompressibility, as shown in further analyses. The resulting
system of equations for the evolution laws is nonlinear, solved in this work by the Newton-Raphson procedure.
For the components of Helmholtz free energy, we apply a neo-Hookean law, written in each case as follows:

ψve =
Λ

2
(ln Jve)

2 + µve (trEve − ln Jve) , (12)

ψe = µe (trEe − ln Je) , and (13)

ψkin
pe

=
c

2
(trEpe

− ln Jpe
) . (14)

where Λ, µe, µve are the Lamé parameters of the material, and c is already defined in the eq. (11).

6 Uniaxial relaxation and creep tests

In order to characterize the basic constitutive behaviour of the present model, we begin our analysis with
simple uniaxial examples of relaxation and creep, using the material parameters shown in Table 1.

Table 1. Material parameters

Λ (MPa) µve (MPa) µe (MPa) η (MPa·s) σY (MPa) c (MPa) b ηp (s) αp (MPa) m

320 80 40 50 35 100 2.7 1 35 1
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For the relaxation test, we apply prescribed tensile engineering strain, evolving linearly from 0 to 0.5 up until
the time instant t1 (‘loading’ stage), and fixed in 0.5 from t1 to t2 (‘relaxation’ stage), as shown in Fig. 2(a). The
total number of steps is taken as 2000, equally distributed between the two stages. In our analysis, t2 assumes a
fixed value of 8s, while t1 is variable. In Fig. 2(b), we display the Cauchy stress results for four different values of
t1: 4s, 2s, 1s and 0.1s. We observe significant rate dependency both on the elastic and plastic phases, with greater
stiffness values on the cases with higher strain rates (i.e. smaller t1), resulting in greater stress values at the end
of the loading stage. On the other hand, during the relaxation stage, the final stress values tend to be lower for the
higher strain rates, due to the greater plastic strains in these cases.
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Figure 2. Uniaxial relaxation test. (a) Prescribed engineering strain over time and (b) Cauchy stress over time.

For the creep test, we apply prescribed compressive nominal stress, fixed at −100MPa up until the time
instant t1 (’loaded creep’ stage), and fixed at 0 from t1 to t2 (’unloaded’ stage), as shown in Fig. 3(a). The total
number of steps is taken as 1000, equally distributed between the two stages. In our analysis, t2 assumes a fixed
value of 10s, while t1 is variable. In Fig. 3(b), we display the engineering strain results for five different values
of t1: 5s, 2.5s, 1s, 0.1s and 0.01s. As expected, the engineering strain increases over the time during the loaded
stage, consequently resulting in higher values for the cases with greater t1. Accordingly, the plastic strain also
increases with the time, resulting in higher residual strains during the unloaded stage. This behaviour, as well as
the one in the relaxation case, is generally seen in experimental results of viscoelastic-viscoplastic materials (see,
for instance, [3]), indicating that the present model can indeed properly represent such materials.
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Figure 3. Uniaxial creep test. (a) Prescribed nominal stress over time and (b) engineering strain over time.
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7 Partially loaded block

This example consists of a rectangular block subject to a partially applied compressive load, as shown in
Fig. 4, with the material parameters from Table 1, and plane strain approximation. For the finite element applica-
tion, we employ the geometrically nonlinear formulation described in [11, 17, 18], characterized by using positions
as nodal parameters, instead of displacements, and a total Lagrangian description. For this example, we employ
a 10-node triangular element with cubic approximation (T10). Due to the symmetry, only half of the geometry
is discretized, with a mesh of 200 triangular elements and 961 nodes. In order to cover different strain and stress
rates, the maximum analysis time t1 is variable, with the total number of steps fixed as 10000.
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Figure 4. Geometry and mesh for the partially loaded block example

In the Fig. 5, we show the results of vertical displacement measured at point A, for different values of t1.
Again, we observe a increasing of stiffness values for the cases with higher load rates, resulting in smaller dis-
placements. As expected, this affects not only the viscoelastic response, but also the viscoplastic. In particular, for
the case with t1 = 0.5 · 10−1s, the problem approaches a simple hyperelastic behaviour, with negligible residual
displacement after the unloading stage. The evolution of displacements after the unloading is also negligible in
the cases with lower rates (i.e. higher t1 values), despite the residual displacement being higher, and can only be
noticed in the cases with intermediate rates (t1 = 0.5 · 101s and t1 = 0.5 · 102s). In Fig. 6, we show the deformed
configuration at the maximum load step (20% time percentage) and the final step (100% time percentage), for four
different values of t1, with vertical viscous deformation (Ev)22 displayed in the colour map.
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Figure 5. Graphs of (a) displacement by force and (b) displacement over time, for the partially loaded block
example.

Following, we investigate the time-dependency of the property of inelastic incompressibility, with a conver-
gence analysis of the plastic and viscous Jacobian errors. For this, we set t1 = 0.5 · 104s, using four different time
discretizations, with ∆t values of 2s, 1s, 0.5s and 0.25s. In Fig. 7 we show the maximum error on the plastic and
viscous Jacobian for each of these cases, using a logarithmic scale. As can be seen, the errors are negligible for
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Figure 6. Deformed configuration of the partially loaded block example at 20% and 100% time percentage for four
different load rates, with vertical viscous deformation (Ev)22 displayed in colour map

practical purposes, and, furthermore, can be reduced by using smaller values of ∆t. More precisely, the inclination
of the lines in both graphs are approximately 1.149944643 and 1.023697852, respectively, indicating that both
have a near first order convergence.
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Figure 7. Convergence analysis for the (a) plastic Jacobian and (b) viscous Jacobian.

8 Conclusions

In this work, we proposed a thermodynamically-based viscoelastic-viscoplastic constitutive model applied
to large strain problems. We began our analyses by showing the constitutive response of the model for simple
uniaxial problems of relaxation and creep. The observed behaviour is consistent with the experimental results
of viscoelastic-viscoplastic materials, such as polymers and asphalt. Following, we incorporated the proposed
constitutive model to a nonlinear Finite Element framework, and applied it to a representative example of partially
loaded cube. On this problem, we analysed the constitutive behaviour produced by monotonic loading-unloading
under a wide range of load rates, and the property of inelastic incompressibility. For the latter, we concluded that
the correct evaluation of inelastic Jacobians is indeed affected by the numerical implementation, particularly the
time integration algorithm. However, the errors are negligible for practical purposes, and can be further reduced
by refining the time discretization.
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