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Abstract. Various applications of the micromorphic continuum theory have been proposed in the past mainly
due to its regularization properties in strain localization problems as a consequence of its non-local character. The
micromorphic theory is particularly suited for the analysis of quasi-brittle materials as the microstructural behavior
is incorporated in its formulation through the consideration of additional degrees of freedom related to the material
particle. In order to allow the application of the micromorphic theory associated to damage models, extending its
regularization properties to different constitutive models, this work presents a generalization of classical scalar-
isotropic damage models for the micromorphic theory implemented in a constitutive models framework for elastic
degrading media. To guarantee conformity to a classical implementation, a compact tensorial formulation is used,
allowing the application for the micromorphic theory of theoretical and numerical resources already defined for
the classical theory. A homogenization strategy is also employed to obtain the micromorphic constitutive relations
through the consideration of a Cauchy continuum in the micro-scale, what makes possible non-linear analysis of
micromorphic media with only the definition of the material parameters of a classical continuum.

Keywords: Micromorphic continuum, Continuum damage models, Elastic-degradation, Equivalent strain mea-
sures.

1 Introduction

In the classical continuum mechanics the study of the material behavior is based on the hypothesis that every
point in the material is occupied by a small element of the solid, i.e., a material particle. The dimensions of each
particle are small compared to all characteristics lengths, but nevertheless large compared to atomic dimensions,
leading to its idealization as mathematical points [1]. Hence, the medium kinematics is then described by the
translational degrees of freedom of the material particles and the consequent measures of deformation.

When it comes to the modeling of inhomogeneous materials based on the classical continuum, the constitu-
tive equations are developed assuming the concept of a material particle associated to the idea of a representative
volume element (RVE). The RVE is structurally typical of the whole mixture on average, being statistically repre-
sentative of the infinitesimal material neighborhood of a material point [2–4].

Therefore, the kinematics and statics descriptions of the medium consider only average macroscopic char-
acteristics, disregarding the microstructure constituents behavior. For the modeling of usual structures in the
engineering field these hypotheses are sufficient. However, in situations wherein the RVE concept does not fully
represent the substructure influence in the material behavior or the structural dimensions are small comparatively
to the microstructure, theories that incorporate information on the material substructure are required.

In order to accommodate the material microstructure into the analysis, generalized continuum mechanics were
developed through the expansion of the basic working hypotheses of standard continuum mechanics of Cauchy
[5, 6]. Two classes of generalized continua may be distinguished based on the considered generalizations: higher
order continua, for the case of additional degrees of freedom, and higher grade continua, regarding higher order
gradients of the displacement fields [7–10].

In this context, this work presents equivalent strain measures for continuum damage models applied to the
micromorphic continuum theory, which can be placed under the category of higher order continua. In this theory,
each material point is assumed to be a microcontinuum whose kinematics defines the additional degrees of freedom.

CILAMCE-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Equivalent strain measures for micromorphic continuum damage models

Due to its formulation, this generalized continuum theory is able to capture size-effects and it is particularly suited
to account for materials possessing a significant microstructure, e.g., quasi-brittle media.

In addition, to overcome the two main drawbacks of the micromorphic theory, the definition of additional
constitutive equations and the determination of the high number of constitutive parameters, a multiscale formula-
tion proposed by Silva [11] is here employed to obtain the macroscopic micromorphic constitutive relations using
parameters defined for the classical theory.

The implementations were held in the software INSANE (INteractive Structural ANalysis Environment) and
were based on a tensorial format of a unified constitutive models formulation.

2 Continuum Damage Models

The modeling of damage and fracture has been an important study topic in the field of computational me-
chanics as, after a certain load, the structure of a given material may begin to deteriorate with the formation of
cracks weakening the solid and reducing its load carrying capacity. By nature, these defects are discrete entities
and an accurate analysis of their influence would require considering these disturbances of the material continuum.

Based on the same idea used for the formulation of constitutive equations, which describe the deformational
process modeling the solid as a continuum, Kachanov [12] introduced the basis for the continuum damage theories.
In Continuum Damage Models (CDM) the medium is modeled at the macro scale as a continuum body and the
collective effect of damage is described by field variables denominated damage variables. This hypothesis of a
continuum body is based on the definition of a representative volume element (RVE), allowing the transition from
microscopic to macroscopic variables.

Physically, the damage variable is “defined by the surface density of microcracks and intersections of mi-
crovoids lying on a plane cutting the RVE of cross section δS” [13]. For a scalar-isotropic damage model, this
variable does not depend on the normal to this plane and the intrinsic variable is a scalar D.

The progressive material degradation may be represented by the deterioration of its elastic properties. In this
case, for a uniaxial state, the original Young’s modulus is progressively degraded passing from an initial value E0

to ES that represents the modulus for the damaged material and evolves during the loading process. For a more
general case, the process is represented by the degradation of the constitutive operator E0

ijkl,

ESijkl = (1−D)E0
ijkl. (1)

3 Micromorphic continuum theory

The micromorphic continuum theory, as aforementioned, is a generalized continuum theory that incorpo-
rates additional degrees of freedom at each material point. As defined by Eringen [14], “a microcontinuum is a
continuous collection of deformable point particles.” In order to represent the intrinsic deformation of a point,
each deformable particle is replaced with a geometrical point P and some vectors attached to P that are related to
the orientations and deformations of its material points. In addition, the vectors assigned to P also represent the
additional degrees of freedom of each particle.

For such continuum, disregarding temperature variations, the free energy density ψ is approximated by

ψ ≈ ψ0 +
1

2
Aklmnεklεmn +

1

2
Bklmneklemn +

1

2
Cklmnpqγklmγnpq + Eklmnεklemn+

+ Fklmnpεklγmnp +Gklmnpeklγmnp

(2)

where ψ0 is the initial internal energy density; U0 = ψ−ψ0 is the strain energy density; Aklmn, Bklmn, Cklmnpq ,
Eklmn, Fklmnp and Gklmnp are the constitutive moduli; and εkl, ekl, and γklm are the linear strain tensors.

From eq. 2 and applying symmetry regulations [14] the constitutive equations may be written as

tkl = Aklmnεmn + Eklmnemn + Fklmnpγmnp (3)

skl = Emnklεmn +Bklmnemn +Gklmnpγmnp (4)
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mklm = Fnplmkεnp +Gnplmkenp + Clmknpqγnpq (5)

where tkl is the stress tensor, skl is a symmetric stress tensor named micro-stress average [15], and mklm is the
stress moments tensor. The constitutive moduli may then be constructed by the product of the Kronecker delta δkl,
i.e.,

Aklmn = λδklδmn + (µ+ κ)δkmδln + µδknδlm,

Eklmn = (λ+ ν)δklδmn + (µ+ σ)(δkmδln + δknδlm)

Fklmnp = 0,

Bklmn = (λ+ 2ν + τ)δklδmn + (µ+ 2σ + η)(δkmδln + δknδlm),

Gklmnpq = 0,

Cklmnpq = τ1(δklδmnδpq + δkqδlmδnp) + τ2(δklδmpδnq + δkmδlqδnp)+

+ τ3δklδmqδnp + τ4δknδlmδpq + τ5(δkmδlnδpq + δkpδlmδnq)+

+ τ6δkmδlpδnq + τ7δknδlpδmq + τ8(δkpδlqδmn + δkqδlnδmp)+

+ τ9δknδlqδmp + τ10δkpδlnδmq + τ11δkqδlpδmn

(6)

wherein λ, µ, κ, ν, τ , η and τ1 . . . τ11 are 18 elastic parameters.

4 A unified formulation for elastic degradation in micromorphic continua

In this work, the modeling of the elastic degradation for micromorphic continua is based on the unified
framework for constitutive modeling presented in Penna [16]. This framework is able to enclose a large amount of
constitutive models (e.g., elasto-plastic, isotropic, orthotropic, and anisotropic elastic-degrading) based on multiple
loading functions with the use of a tensorial format instead of vectorial-matricial one. This particularity increases
the generality and the possibility of expansion of the code.

The theoretical basis for a unified formulation for constitutive models has been developed in the last years by
a number of authors (see, e.g., [17–23]). The unified framework here presented [16] proposed an expansion based
on the work of Carol et al. [18].

In a geometrically linear context, an elastic-degrading classical medium is characterized by total stress-strain
relations

σij = Eijklεkl and εij = Cijklσkl (7a,b)

where Eijkl and Cijkl are the components of the fourth-order stiffness and compliance tensors, inverse of each
other (i.e., C−1

ijkl = Eijkl and E−1
ijkl = Cijkl). The equations presented correspond to the assumption of an

unloading-reloading process where the stiffness remains equal to the current secant one, i.e., a full unload leads to
no permanent strains.

Similarly, a micromorphic elastic-degrading medium is characterized by three total stress-strain relations
(eqs. 3 - 5) as, for the classical formulation, there is only a single total stress-strain relation (eq. 7). To approach
this consistency problem, a compact tensorial formulation is proposed, in which the micromorphic total stress-
strain expressions may be condensed in a single generalized secant relation, adopting the same formalism as Gori
et al. [24]:

Σβν = ESβνδψΓδψ, for β, ν, δ, ψ = 1, 2, ...9 (8)

where the generalized stress operator Σβν and the generalized strain operator Γδψ represent second-order tensors
with dimension nine that group the stress and strain measures of the micromorphic continuum, respectively. The
generalized secant operator ESβνδψ gathers the four constitutive operators of the micromorphic theory for isotropic
linear elastic solids, i.e., Aklmn, Bklmn, Cklmnpq , and Eklmn, in a fourth-order tensor with dimension nine.

Hence, the compatibility problem between both formulations is addressed enabling the extension of elastic-
degrading models to the micromorphic theory within the same computational framework of classical models.
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4.1 Scalar isotropic damage models

For scalar-isotropic damage models the degrading process is characterized by a single scalar damage. Ex-
tending this principle to micromorphic media and applying the generalized tensorial formulation presented, the
resulting generalized constitutive operator can be expressed as

ESβνδψ(E0βνδψ, D) = (1−D)E0βνδψ (9)

where E0βνδψ represents the initial elastic operator andD the damage variable, which varies from 0 for undamaged
material to 1 for completely damaged material. The loading function can be written as

F (Γeq, D) = Γeq(εmn, emn, γnpq)−K(D) (10)

with Γeq defined as the generalized equivalent strain and K(D) is the history variable related to the equivalent
strain written as a function of the damage.

Applying this general formulation, different damage models for the micromorphic continuum can be obtained
when specific equivalent strain measures are defined. Considering the extension of the classical models proposed
by Mazars and Lemaitre [25], Simo and Ju [26], Ju [27], and Marigo [28] the following equivalent strain measures
were proposed:

Γeq =



√
ΓδψΓδψ (Mazars-Lemaitre)√
2ψ0 (Simo-Ju)

ψ0 (Ju)√
2ψ0/E (Marigo)

(11)

with ψ0 = 1
2E

0
βνδψΓβνΓδψ and E being the material Young’s modulus.

5 Homogenization of a Classical continuum towards a micromorphic continuum

The analytical and discrete formulations of the micromorphic theory are well established in the literature,
however the identification of the corresponding constitutive laws and the determination of the high number of
constitutive parameters limit its practical application. As an alternative to circumvent these limitations, the mi-
cromorphic homogenization strategy proposed by Silva [11] and based on Hütter [29] is here employed, which
consists in a multiscale formulation for the construction of macroscopic micromorphic constitutive relations in
terms of homogenized microscopic quantities obtained from the solution of boundary value problems at the micro
scale according to the classical continuum theory. This strategy begins with models of the classical continuum
on the micro scale, without making any constitutive assumptions on the macroscale. Consequently, the necessary
material parameters are those of the classical theory.

In this work, this formulation is applied so the initial elastic tensor E0βνδψ is obtained only for the first step
of the first iteration by subjecting the material particles to Cauchy stress states resulting from elementary states
of strain, which consist of the successive application of component by component of macroscopic micromorphic
strain with unit value, while the others components are kept as zero. From the Cauchy stress states, the components
of macroscopic micromorphic stress are determined, which, as a result of elementary states of strain, consist of
the terms of macroscopic micromorphic constitutive relations. For the subsequent iterations and steps, the initial
constitutive relations are degraded through the investigation of the degraded state of the material based on the
specified damage model. This strategy is illustrated in Figure 1.
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Figure 1. Micromorphic homogenization strategy

6 Numerical simulation

The implemented constitutive models presented are here illustrated considering the model in Figure 2: a
square panel in a plane-stress state with unitary thickness composed of one plane element and loaded in the x
direction.
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q = 1.0 MN/m 

1 m

1 
m

(a) Geometry

1 2

34

(b) Mesh

Figure 2. Uniaxial stress state

For obtaining the initial elastic tensor necessary for isotropic damage models, the homogenization strategy
was applied with a square microcontinuum of dimension 0.05m. The equivalent isotropic material is characterized
by a Young’s modulus of 20000 MPa and a Poisson’s ratio of 0.2. The appropriated parameters for each constitu-
tive model were adopted considering an exponential damage law [16].Hence: Mazars-Lemaitre micromorphic
model: α = 0.999, β = 2000.0, κ0 = 0.000104; Simo-Ju micromorphic model: α = 0.999, β = 15.0,
κ0 = 0.0145; Ju micromorphic model: α = 0.999, β = 15.0, κ0 = 0.00011; Marigo micromorphic model:
α = 0.999, β = 2000.0, κ0 = 0.000104.

The parameters presented for each model vary as the conceptual differences between the models preclude the
exact correspondence between the parameters even for the same damage law. The loading process is driven by the
displacement control method assuming an increment of 5× 10−6 m for the horizontal displacement of the loaded
face in order to better describe the peak load behavior, and a tolerance for the convergence of 10−4 in load. The
results for the analysis are presented in Figure 3 wherein the relation between the horizontal displacement for node
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2 (Figure 2(b)) and the load factor is given. Consistent results for all the models are obtained, attesting that the
implemented models for the micromorphic continuum are working properly.
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Figure 3. Uniaxial stress state: load factor versus horizontal displacement

7 Conclusions

The aim of the present work was to provide a basis for the modeling of damage by means of continuum
damage model, more specifically scalar-isotropic model, with use of the micromorphic continuum theory in view
of its ability to incorporate the microstructural behavior in the continuum formulation. Due to its formulation, this
theory may address the strain localization phenomenon, characteristic of quasi-brittle media.

The computational implementation was held in the INSANE system within a unified constitutive framework
first proposed for classical media. To solve the compatibility problem, a compact tensorial formulation was pro-
posed allowing the inclusion of damage models for the micromorphic theory with minimum intervention in the
code. Observing the results here presented, it is possible to assume that this formulation is viable as it yields
consistent results. Furthermore, applying the homogenization technique to obtain the initial elastic tensor made
possible the reduction of the number of elastic parameters necessary for the analysis (E and ν), solving one of the
greatest disadvantages of this generalized continuum theory.
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PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil, 2019.
[12] L. Kachanov. On time to rupture in creep conditions. Izvestia Akademii Nauk SSSR, Otdelenie Tekhnicheskikh
Nauk, , n. 8, pp. 26–31. in russian, 1958.
[13] J. Lemaitre and R. Desmorat. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures.
Springer, 2005.
[14] A. C. Eringen. Microcontinuum Field Theories: I. Foundations and solids. Springer, New York, 1999.
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