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Abstract. Cylindrical panels under uncertainties, described by a uniform probability density function, on 

parameters such as thickness and radius, are investigated when static loading is submitted. Firstly, an analytical 

approach - based on the equilibrium equations governed by Donnell’s nonlinear shallow shell theory, Airy’s stress 

function and standard Galerkin method - is taken to evaluate the effects of parameters uncertainties on the buckling 

load and post critical nonlinear equilibrium. Then, an approach based on the finite element method is considered 

to model the same geometry where the mesh is composed by shell elements and its convergence is conducted in 

terms of buckling load. The nonlinear equilibrium path is obtained through the modified Riks method and a 

perturbation parameter. In both methodologies, a set of deterministic samples simulates the stochastic system, 

which are evaluated from Chi-Squared hypothesis test. The uncertainty in the thickness results in a stochastic 

system where the nonlinear equilibrium path can be described as a uniform probability distribution. On the other 

hand, the radius shows a stretching along the curve where a two-component Gaussian mixture fits better the 

obtained response where the mean of axial load as respect to a certain displacement cannot be represented by the 

mean of its lower and upper boundaries. 
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1  Introduction 

The cylindrical panel is a geometry established as a circular sector from a cylindrical shell. It has several 

applications in civil, mechanical, naval, nuclear and aerospace engineering, such as component of planes, roofs, 

submarines, cooling towers and aquariums. Due to its slender aspect, cylindrical panels can lose its stability when 

submitted to static loading. Therefore, the influence of an initial geometric imperfection and lamina lay-up 

sequences on post buckling response are currently investigated in RamanaReddy, Gunda and Padal [1] through 

finite element analysis (FEA). Also, it turns relevant to evaluate the sensibility of the system’s response to 

uncertainties parameters, which occur due to manufacturing issues, as presented in Palla and Silva [2]. 

Imperfect thin-walled isotropic cylindrical shells axially loaded are presented in Papadapoulous, Stefanou 

and Papadraksis [3], taking into account the combined effect of thickness, Young’s modulus, geometric and 

boundary conditions on buckling load. The randomness are treated as non-Gaussian distribution (lognormal, beta, 

U-shaped beta and L-shaped beta) via FEA and Monte Carlo Simulation (MCS) methods. Considering a similar 

approach, Papadapoulos and Papadrakasis [4] analysis the same scenario but the uncertainties are taken as 

Gaussian assumptions. It is shown that the choice of probability density function affects significantly the buckling 

load and the lognormal and beta probability density functions fit better to experimental results.  

In the present paper, cylindrical panels’ stability is conducted, considering the effects of uncertainties in the 

thickness and radius parameters, which are described by a uniform probability density function. Two different 

approaches are presented. Firstly, an analytical approach, which requires Donnell’s nonlinear shallow shell theory 

and a modal solution to transversal displacement field, proposed in Morais and Silva [5], Airy’s stress function 

and a standard Galerkin method are necessary to describe the proposed problem. A FEA, implemented in a 

commercial software Abaqus® is the other approach evaluated in this work. A set of deterministic samples 

simulates the stochastic system, and the nonlinear equilibrium path’s response is evaluated through Chi-Squared 
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method. 

2  Mathematical formulation and methodology 

The geometry studied in this text is described in Fig. 1a where its geometric parameters are thickness h, radius 

R, length L and opening angle Θ. The thin cylindrical panel presents a linear, homogeneous and isotropic elastic 

material, which properties are described by Young’s modulus E and Poisson’s ratio ν. As for the boundary 

conditions, the geometry is simply supported, as shown in Fig 1b, and it is applied a static axial load uniform 

distributed in the panels edge, as illustrated in Fig. 1c. 

   
(a) (b) (c) 

Figure 1. Cylindrical panel: (a) geometric parameters; (b) boundary conditions and (c) applied axial load 

2.1 Analytical approach 

The geometrically nonlinear strain-displacement relationships are based on Donnell’s nonlinear shallow shell 

theory which is appropriate for shallow cylindrical panels where h/R ≤ 1/20. Thus, the motion equations turn into 

a system of two partial differential equations as function of Airy’s stress function f(x,θ) and the transversal 

displacement w: 
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where D refers to the cylindrical panel’s flexural stiffness, which is expressed in eq (2), 𝛻4 is the biharmonic 

operator in the cylindrical coordinate system, x and θ are the axial and circumferential coordinates, respectively, 

and pz is the static loading. 

𝐷 =
𝐸ℎ3

12(1 − 𝜐2)
. (2) 

Airy’s strain function is a partial differential equation, whose solution is related to the applied load 

(homogeneous solution) and the transversal displacement field (particular solution). The transversal displacement 

w for cylindrical panel was proposed by Morais and Silva [5] and it is used in this work, attending the boundary 

conditions for a simply supported cylindrical panel and taking into account the main modal coupling that occur in 

this structural system: 
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(3) 

in which C1 and C2 are the modal amplitudes of the transversal displacement field, m and n are the half-wave in 

axial and circumferential directions, respectively. 

Then, after the analytical solution of Airy’s stress function, the standard Galerkin method is applied to 
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discretize the first equation of eq. (1), obtaining a nonlinear algebraic equation system. Since the modal amplitudes 

of displacement are coupled, Newton-Raphson’s method is required to solve the discretized system to obtain the 

nonlinear equilibrium path.  

2.2 FEA approach 

In this approach, the cylindrical panel is composed by shells’ elements, named as S4R, using the FEA 

software Abaqus®. This shell element is a 4-node, quadrilateral with reduced integration element where its mesh 

convergence is based on the buckling load value. The obtained FEA results are compared with analytical results. 

In FEA, the nonlinear equilibrium path is obtained through the modified Riks method and a perturbation parameter, 

whose use is responsible for destroying the bifurcation point corresponding to the buckling value, as similar as the 

geometric imperfection effects on post buckling equilibrium path. The middle node from the mesh was evaluated 

due its higher displacements because the first buckling eigenvalue leads to the buckling modes m=1 and n=1 in 

the numerical results.  

2.3 Stochastic considerations 

Deterministic samples of cylindrical panels are generated with its evaluated parameter established as any 

possible value between ±10% of the nominal value, being described by a uniform probability density function. 

The number of samples required is based on the mean and variance of critical load of the cylindrical panel. The 

stochastic system of nonlinear equilibrium paths are evaluated through sets of axial loads obtained in three different 

values of transversal displacements (0.01 m, 0.02 m and 0.03 m) and tested in the Chi-Squared method. 

3  Numerical Results 

The evaluated cylindrical panel has nominal parameters: thickness h = 0.01 m, radius R = 8.333 m, length 

L = 1.00 m, opening angle Θ = 0.12 rad, Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. As a result of 

the convergence study of FEA approach, the mesh has 870 shell elements (S4R). When it is investigated the 

random variable, which are thickness and radius, acting individually, the obtained buckling modes for both 

approaches are in disagree as respect to the half-waves number, as shown in Table 1: 

Table 1. First buckling mode response for the approaches 

h (m) FEA  Analytical  R (m) FEA  Analytical  

0.009 
m = 2 n = 1 

m = 1 n = 1 

7.500 
m = 2 n = 1 

m = 1 n = 1 
0.00971 8.09982 

0.00972 
m = 1 n = 1 

8.09983 
m = 1 n = 1 

0.011 9.166 

 

Since the first buckling mode is directly responsible for the nonlinear equilibrium path configuration, the 

random variables range are considered only inside the interval which both approaches have the same response 

m = 1 and n = 1. So, panels thickness can assume any value in h = [0.00972, 0.011] and radius in R = [8.09983, 

9.166] according to a uniform distribution probability density function. The middle node coordinates is established 

as (r, θ, z) = (8.333, 0.062, 0.5). Firstly, the nonlinear equilibrium paths of stochastic system are obtained 

considering 1200 samples of its random variables. 

3.1 Stochastic response on variables’ individually assumption 

The overall response of the stochastic system’s nonlinear equilibrium path, displayed in Figure 2, when 

thickness is itself assumed as a random variable shows that for both approaches and for the three selected 

displacements evaluated the strength’s values sets can be well represented by a uniform distribution as concluded 
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in Table 2. Thus, this parameter does not imply such a nonlinear contribution in this problem and the mean’s 

loading value of the interval can be assumed as the mean of its lower and upper boundaries, regardless the 

displacement evaluated. On the other hand, the radius’ scenario does not follow the same. This parameter shows 

in Figure 2 a stretch along the system widely nonlinearly influenced in both approaches. This region does not fit 

properly according to a uniform distribution. There is also a difference between analytical and FEA procedures 

related to the nonlinearity segment along the path, which reveals perhaps the influence of the perturbation 

parameter required in FEA approach.  

 

(a) (b) 

Figure 2. Stochastic system’s nonlinear equilibrium path due to effect of: (a) thickness; (b) radius 

Since the uniform distribution does not fit properly some radius’ stretch effect, others are investigated, such 

as: Gaussian, Gamma, Lognormal, Two Gaussian Mixture Model, Largest Extreme Value, Smallest Extreme 

Value, Triangular, Rayleigh and Half Normal. The lowest chi-square χ2 happens in both approaches with the two 

Gaussian model distribution. Table 2 shows the results of best distribution fit pro evaluated displacement. 

Table 2. Best probability distribution fit 

Parameter Approach d = 0.01 m (33%) d = 0.02 m (66%) d = 0.03 m (final) 

Thickness h 

Analytical Uniform (χ2 = 71.55) Uniform (χ2 = 72.90) Uniform (χ2 = 85.80) 

FEA Uniform (χ2 = 11.40) Uniform (χ2 = 12.33) Uniform (χ2 = 6.93) 

Radius R 

Analytical Uniform (χ2 = 68.13) 
Two Gaussian mixture 

(χ2 = 278.60) 
Uniform (χ2 = 122.96) 

FEA 
Two Gaussian mixture 

(χ2 = 105.39) 
Uniform (χ2 = 67.87) Uniform (χ2 = 38.67) 

3.2 Stochastic response on combined variables’ assumption 

When both variables are evaluated together, some samples from the 1200 generated through the FEA 

approach have their buckling mode different from half-waves m = 1 and n = 1, as shown in Figure 3. Therefore, 

these 151 samples are not accounted to evaluate the nonlinear equilibrium path stochastic system’s response. 

Despite that the convergence remains. Table 3 shows that in this case the mean of sets of axial load cannot be 

represented as the mean of its lower and upper boundaries. Furthermore, the two approaches disagree with each 

other on the best probability density function - two Gaussian mixture fits better analytical procedure and triangular 

FEA. 
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Figure 3. Stochastic system’s nonlinear equilibrium path due to effect of thickness and radius combined 

Table 3. Best probability distribution fit 

Parameter Approach d = 0.01 m (33%) d = 0.02 m (66%) d = 0.03 m (final) 

Thickness h 

and radius R 

Analytical 
Two Gaussian mixture 

(χ2 = 51.35) 

Two Gaussian mixture 

(χ2 = 56.15)  

Two Gaussian mixture 

(χ2 = 42.16) 

FEA Triangular (χ2 = 82.45) Triangular (χ2 = 7.53) Triangular (χ2 = 9.40) 

4  Conclusions 

When variables are individually assumed as random parameters, in thickness’ case both approaches lead to 

a uniform probability density function as suitable. On the other hand, the radius’ scenario shows a stretching along 

the curve where a two-component Gaussian mixture fits better the obtained response, but this region does not 

situate the same in the analytical procedure and FEA one. Finally, the stochastic response on combined variables’ 

assumption is also not suitably represented as a uniform probability density function, so the mean of sets of axial 

load cannot be represented by the mean of its lower and upper boundaries. A two-component Gaussian mixture 

represents better the sets of axial load in an analytical approach. A Triangular fits instead it better in FEA one.  
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