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Abstract. Condition monitoring consists of constant data acquisition from a machine of interest to determine its 

operational condition, and also to give reasonable predictions regarding its behavior over time. Considering that 

vibration generated by a machine carries information about internal conditions and is sensitive to structural 

changes, vibration analysis can be employed to detect faulty components. As some defects have known vibrational 

responses (“vibrational signatures”), it is possible to infer the type of defect by analyzing the vibration signal 

characteristics. An algorithm capable of automatically doing this type of analysis could potentially prevent 

financial or physical harm. In this context, the present study focuses on preprocessing vibrational response data 

related to induced defects in a rotating system, extracting features of interest, using a machine learning classifier 

to identify common problems, and segregating troublesome conditions from expected normal operation ones. The 

processed data was obtained from the Machine Fault Dataset (MaFaulDa/UFRJ). The obtained results show the 

influence of dataset structuring on the algorithm generalization capability, revealing that bigger datasets do not 

always lead to superior performance and that an increase in the amount of attributes is not always the most 

interesting choice. 
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1  Introduction 

Amongst many maintenance strategies in the industry, condition-based maintenance (CBM) has been widely 

applied due to its economic and life-safety advantages, making it one of the most efficient maintenance strategies 

[1]. When applied to rotating machines, CBM is referred to as condition monitoring (CM) [2]. This strategy, 

according to Scheffer and Girdhar [3], consists of constant acquisition of machinery data aiming not only to 

determine operational conditions, but also to give reasonable predictions of machine behavior over time [1]. 

 CM can be implemented via vibration analysis, since vibration generated by a machine carries information 

about internal and structural conditions. In other words, the "vibration signature" [2][4] of a machine differs from 

the standard signature when a defect is present. According to Scheffer and Girdhar [3], CM through vibration 

analysis is the most effective technique for detecting faults in rotating machines. 

In industrial applications, vibration obtained from an operating machine in real time can be compared with 

historical data from a former regular condition to provide diagnostics concerning the type of fault that is already 

present or is slowly developing. This is due to the fact that some defects have well known vibrational responses, 

which makes it possible to categorize the fault only by analyzing the characteristics of the vibration [5].  

Machine learning methods have been gaining importance in the context of CM. For instance, Marins et al. 

[6] introduce a machine learning algorithm capable of classifying failures of rotating machines that could 

potentially prevent the majority of cases where human error would cause financial or physical harm. 
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In this study, vibration response data related to purposely induced defects in a rotating system is preprocessed 

to extract the corresponding features in the frequency domain and use neural networks to build an intelligent 

algorithm. This algorithm should be capable of identifying problems such as imbalance and misalignment and 

segregating those conditions from the expected normal operation conditions. The data comes from the Machine 

Fault Database (MaFaulDa), acquired at the Signal, Multimedia and Telecom Laboratory (UFRJ) [6]. The results 

show the influence of dataset structuring on the network’s generalization capability, resulting in a biased algorithm 

capable of obtaining good performance when using randomized samples, but performing poorly when using more 

well distributed samples along the frequency range. 

2  Methodology 

As previously mentioned, the employed dataset is the MaFaulDa/UFRJ [6]. This database was obtained by 

introducing different defects on a SpectraQuest’s machinery fault simulator, which is capable of reproducing 

several conditions of rotating machinery dynamics for different rotation speeds 

[https://spectraquest.com/simulators/details/mfs/]. Each measurement was made in a time interval of 5s. The 

vibration response was measured by one tachometer, one microphone and two sets of three accelerometers (one 

set for each bearing), in axial, radial and tangential directions. 

Among the different kinds of faults considered in MaFaulDa, the analysis herein is focused on the horizontal 

misalignment. In order to make the data more treatable for purposes of this study, the data was resampled from its 

original 50 kHz sampling frequency to 1 kHz. Moreover, microphone data was not taken into consideration. It is 

important to mention that some small differences were observed between rotation speeds calculated from the 

tachometer readings and the nominal speeds. In the present work, it was then opted to use the calculated rotation 

speeds with no loss of generality. 

The Fast Fourier Transform (FFT) was applied to each signal aiming at a frequency domain analysis. 

Regarding the structure of the datasets, the chosen approach was to consider the magnitude of the FFT in order to 

apply the so-called frequency/spectral analysis [7].  

2.1 Frequency Analysis 

When analyzing rotating machinery data in the frequency domain, a common practice is to search for peaks 

of amplitude, usually located at multiples of the fundamental rotation frequency. It is known that the application 

of FFT to a N point time vector returns a N point frequency vector where the absolute values start repeating after 

N/2 points due to the periodic nature of the FFT. Taking this into account, for each calculated FFT, only the first 

half of the generated array was included in the dataset. 

2.2 Dataset assembly 

In the present work, five different classes from the MaFaulDa dataset were retrieved: four classes of 

horizontal misalignment (0.5mm, 1.0mm, 1.5mm and 2.0mm) and the “normal” class, which represents the 

vibrational behavior of the machine in good operating conditions. For each of these five classes, there was one 5-

second sample for each rotation speed. Then, three different forms of dataset structuring were considered here, 

resulting in three case studies, which are described in the following.  

Case 1: The 5 seconds of data in each sample were taken into consideration without segmentation, resulting 

in FFTs with N=5000 points, from which the first N/2 FFT magnitude samples were used as attributes in the dataset 

(samples in the range 0 to 2.5 kHz). 

Case 2: Same as Case 1, but using only the first N/5 first magnitude samples of the FFTs (in the range 0 to 

500 Hz). 

Case 3: A segmentation of each sample was performed, leading to five different 1-second samples for each 

rotation/class combination, which produced FFTs with N=1000 points. As in Case 1, only the N/2 first FFT 

magnitude samples were used as attributes (range 0 to 500 Hz). 

For each of these 3 cases, 6 different classification tasks were performed, each considering data from a single 

accelerometer isolated. A seventh classification task was also performed for each case considering the data from 
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all accelerometers together. 

2.3 Machine Learning Algorithm Implementation 

A machine learning (ML) approach based on a multilayer neural network (multilayer Perceptron - MLP) [8] 

was applied to all cases considered. Such an approach was implemented using the Scikit-Learn Python module 

[9][10] and trained using the Adam method [11]. 

When structuring the model, the default Scikit-Learn’s MLP hyperparameters were used, except for the ones 

specified in the following. For the classification tasks set up with data from a single accelerometer, the model 

consisted of 1000, 700 and 500 neurons for each the three hidden layers, respectively; for the tasks involving 

features from all the 6 accelerometers together, the model consisted of 2000, 1000 and 500 neurons for each hidden 

layer, respectively. Moreover, the maximum number of training epochs was set to 500, the L2 regularization 

penalty was set to 0.01 and the maximum number of epochs after meeting the default tolerance was equal to 30. 

These values of hyperparameters were obtained from preliminary experiments. 

3  Results and Discussion 

The results obtained for Case 1 are presented in Table 1. These results show that, although the model 

generally has a very good performance (88.29%) when considering all accelerometer attributes together as 

features, it performs even better when taking only the external radial accelerometer (AccRad2) into account 

(93.69%). With respect to Case 2, from the results shown in Table 2, one can notice that better accuracy is obtained 

when the accelerometers are taken together (77.03%). For this case, the highest accuracy reached using a single 

accelerometer was 71.17% (AccRad2). 

Table 1. Results for Case 1 (5 seconds window, 0 to 2500 Hz) 

Table 2. Results for Case 2 (5 seconds window, 0 to 500Hz) 

Accelerometer 
Average of the best  

3 train scores 

Average of the best 

3 test scores 

Test variance for 

all tests 

Axial 1 100% 59.01% 0.37% 

Radial 1 100% 74.32% 0.42% 

Tangent 1 100% 49.10% 0.27% 

Axial 2 100% 55.41% 0.23% 

Radial 2 100% 93.69% 0.33% 

Tangent 2 100% 47.30% 0.22% 

All 100% 88.29% 0.53% 

Accelerometer 
Average of the best 

3 train scores 

Average of the best 

3 test scores 

Test variance for 

all tests 

Axial 1 100% 52.25% 0.32% 

Radial 1 100% 50.00% 0.15% 

Tangent 1 100% 41.44% 0.22% 

Axial 2 100% 47.30% 0.21% 

Radial 2 100% 71.17% 0.17% 

Tangent 2 100% 42.79% 0.28% 

All 100% 77.03% 0.43% 
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The results for Case 3 (with segmented signals) are shown in Table 3. From this table, one can notice that, 

when applying the MLP classifier to each single accelerometer, the best performance is obtained using AccRad2 

(71.17%). However, the performance is even better when considering all the accelerometers together (81.98%), 

even exceeding the result obtained for Case 2 (without segmentation and frequency range of 0 to 500 Hz). The 

results of Tables 1-3 are related below to those of Figure 1, for classification tasks. 

Table 3. Results for Case 3 (1 second window, 0 to 500 Hz) 

 

 

Figure 1. Score test distribution of all 30 executions for: a) Case 1 (5 seconds window, 0 to 2500 Hz); b) Case 2 

(5 seconds window, 0 to 500 Hz); c) Case 3 (1 second window, 0 to 500 Hz) 

Accelerometer 
Average of the best 

3 train scores 

Average of the best 

3 test scores 

Test variance for 

all tests 

Axial 1 100% 51.35% 0.31% 

Radial 1 100% 49.55% 0.14% 

Tangent 1 100% 43.69% 0.28% 

Axial 2 100% 50.00% 0.26% 

Radial 2 100% 71.17% 0.19% 

Tangent 2 100% 39.19% 0.20% 

All 100% 81.98% 0.28% 
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When the classification tasks with a single accelerometer are compared, some interesting patterns emerge. 

Figure 1 shows histograms of accuracy results obtained running the training of the classifier thirty times for each 

single-accelerometer classification task. From this figure, one can notice that, for all cases, best performance was 

obtained using either radial accelerometer 1 (AccRad1) or 2 (AccRad2), which confirms the results from Table 1, 

Table 2 and Table 3. It is important to mention that this is the behavior reported as expected [12]. 

Another important result worth highlighting is that larger numbers of features do not necessarily result in 

superior performance. This is evident from the results obtained for Case 1 (Table 1), where the best results were 

obtained using a single accelerometer instead of all accelerometers together. The opposite was observed for Cases 

2 and 3, where the best results were obtained when all accelerometers were accounted together for the classification 

task. It is also worth noting that the use of signal segmentation to enlarge the dataset did not deliver better results, 

contradicting the authors’ expectations. That can be observed by comparing the results obtained for Case 3 with 

those from Case 1. 

Thus, these results show that, for the cases considered, dataset size was not a determinant factor to ML 

algorithm performance and neither the number of features considered. Therefore, further investigation is required 

to find the most relevant attributes in a way to improve the classifier reliability and efficiency. 

4  Conclusions 

In this study, different dataset structures were submitted to a MLP neural network machine learning 

algorithm, revealing a clear influence of the dataset structure on the ML algorithm performance. Also, neither 

dataset size nor quantity of attributes were noted to be determinant on the algorithm's reliability. Further studies 

should be carried out to find the most relevant attributes concerning the vibrational response of rotating machines 

aiming to feed the algorithm with relevant features as well as to dismiss the irrelevant ones. 
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