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Abstract. This paper aims to study the topology optimization of two-dimensional structures based on their 

dynamic response by implementing a computational algorithm that optimally distributes the material in a project 

domain based on the SIMP approach (Solid Isotropic Material with Penalization). It allows for a well-defined 

result and therefore a layout that can be manufactured since it penalizes intermediate densities thus eliminating 

them from the final result. The model uses the Finite Element Method (FEM) for spatial discretization and to 

evaluate the objective function, the restraints, and the sensitivities through iterations. Since it does not depend on 

the initial representation, the solution of a topology optimization problem can be represented with a high degree 

of geometric complexity, requiring a certain level of refinement of the finite element mesh. This refinement can 

cause sub-regions of the domain resembling a checkerboard pattern, which is avoided when a sensitivity filter is 

used. The optimization objective function is taken as the lowest eigenfrequency of the structure, as to avoid 

resonance, a common problem in civil and mechanical structures. 
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1  Introduction 

Structural optimization aims to determine an optimal solution, defined in a design domain, that favors 

mechanical performance while satisfying all the constraints imposed by the model. Technological advances and 

research in numerical methods have boosted the implementation of computational algorithms in the elaboration of 

structural projects, providing results of high reliability and simplifying the steps of verifying calculation criteria 

and also of model constraints. Moreover, there is a search for the conception of slender vertical structural 

arrangements that must be able to withstand the loads imposed on them with permissible displacements. Therefore, 

it is evident the need to improve the methodology for the elaboration of projects of less flexible structural 

arrangements or the use of vibration control devices that bring the rigidity of the system, used in mitigating the 

dynamic response of buildings subject to the action of winds, the occurrence of earthquakes or vibrations induced 

by man. Structural topological optimization consists of determining the best material distribution within a 

predefined design domain, under given boundary conditions, in order to minimize or maximize, that is, to 

extremize the objective function and meet the constraints of the model. The design variables (density, geometric 

characteristics of the microstructure, etc.), related to the distribution of material, are updated according to the 

mechanical response expected of the structure based on parameters such as flexibility, natural frequencies, stress, 

etc. From an initial assumption of density distribution within the design domain, an iterative process is used to 

update the value of densities from finite element analyses. Filters can be applied to ensure solutions and avoid 

numerical instabilities, such as the checkerboard pattern. This work aims to present the theory of topological 

optimization applied to the maximization of stiffness in beams by dynamic analysis. The formulation of the model 

proposes the maximization of the critical natural frequency in order to avoid the resonance phenomenon when the 

structure is subject to low magnitudes of excitation frequencies. 
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2  Numerical instabilities 

The optimization process is subject to many numerical instabilities both because of the numerical analysis 

(e.g. through finite elements) and because of the variable updating processes. This works focuses on two of such 

instabilities: the checkerboard pattern and mesh dependence.  

2.1 Checkerboard pattern 

This numerical instability is characterized by the formation of alternating solid and void elements in the 

topology, in a similar way to a checkerboard. The most widespread technique to avoid checkerboard instability is 

the sensitivity filter proposed by Sigmund e Bendsøe [1]. This technique acts on the sensitivity analysis, when a 

spatial filter is applied after calculating the derivative of the objective function with respect to the design variable, 

avoiding sudden variations to the densities field without overly increasing the computational cost. 

2.2 Mesh dependency 

Mesh dependency refers to the problem of obtaining qualitatively different solutions when modifying the 

mesh. Mesh refinement aims to achieve greater clarity and better definition of contours, however, refining a mesh 

in a topological optimization problem can increase its complexity [2]. A treatment to reduce the space of allowable 

models and consequently have a mesh-independent problem is to include in the problem some local or global 

restriction on the variation in the space. This inclusion may be done by adding constraints (perimeter, local 

gradients, etc.) in order to reduce the parameter space, or by applying filters during implementation as the mesh 

independence filter. A solution to prevent instability is to update the densities of the elements in the mesh according 

to the weighted average of the densities of the elements in a fixed vicinity of minimum radius as shown in Fig. 1. 

 

Figure 1. The mesh independence filter 

3  Formulating a structural optimization problem 

Structural optimization aims to achieve the best performance for a structure, and can be defined by the 

objective of the problem described by a function, design variables, and a set of constraints used to impose certain 

limits on design variables. The goal is a scalar response that directs structural optimization to better configuration 

of design-independent variables. Structural design variables include points that define structural characteristics 

such as dimensional parameters or density of material in a structural region [2]. 

3.1 Mathematical representation of a structural optimization problem 

An optimization problem in general form can be defined as searching for the maximum (or minimum) value 

of the function 𝑓(𝑥), in which 𝑥 =  (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) is the vector of variables in the solution space 𝑅𝑛, and 

expressed by: 
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Subject to:   0)( x
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where )(xg  and )(xh  are respectively the equality and inequality restrictions, 𝑀 is the number of equality 

constraints and 𝑁 the number of inequality constraints [3]. 

In general, design variables x includes structural characteristics, such as number of members, cross sections, 

or material. The objective function )(xf , depending on the method adopted, consists either in an evaluation of 

the cost of the structure (minimization problem) or its own performance (rigidity, service life, etc.). Constraints, 

in structural problems, include criteria such as equilibrium, maximum displacements and manufacturing 

restrictions, as well as specific criteria of each methodology, such as desired volume fraction or minimum material 

density. 

3.2 SIMP Model 

The term "SIMP", standing Solid Isotropic Material (or Microstructure) with Penalization, bases its 

topological representation on discretizing the design domain into finite elements and assigning each of these 

elements a variable representing its "density", which will affect the effective modulus of elasticity of that element. 

Therefore, the resulting solution can be represented not only with solid and void regions, but with intermediate 

densities. For an element, 

 0EE   (1) 

where 𝐸 is the effective modulus of elasticity for that element, 𝜌 its density and 𝐸0 the modulus of elasticity of the 

solid material. To move intermediate elementary densities (0  <   𝜌  <   1) towards a 0/1 solution, a power-law 

approach is used, penalizing intermediate densities, as in equation: 

  p
ex   (2) 

where 𝑝 >  1 is the penalization power and 𝑥𝑒 is the design variable associated with element 𝑒’s density. SIMP 

uses only one design variable per element, facilitating its implementation in practice, compared to other types of 

microstructures, and generates clearer solutions because of the power-law approach. This penalization is necessary 

as intermediate densities are generally not manufactured. Therefore, answers as close to null or unity as possible 

are required [1] e [4]. 

4  Discretization of a beam using the finite element method (FEM) 

Figure 2 shows the discretization of a beam using FEM. On the left, the representation of a simply supported 

beam in two-dimensional domain Ω, with geometric and mechanical boundary conditions defined describing the 

continuous problem, and to the right, the problem discretized into a mesh of 6 bilinear finite quadrilateral 

subdomains, interconnected by nodal points located at the vertices of the elements. 

 

Figure 2. The discretization of a beam using FEM 
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Throughout this text, square cartesian elements are used for the discretization of the domain. Design variables 

𝑥𝑒 indirectly correspond to each element’s density [8]. 

5  Topological optimization problem of flexibility minimization using FEM and 

SIMP 

The topological optimization problem using FEM approach and SIMP method, where the goal is to minimize 

dynamic flexibility 𝑊(𝑥), that is, maximize the first or second smallest eigenvalue 𝜆1. This eigenvalue 

corresponds to the vibration frequency of the structure 𝜔1 = √𝜆1; [5] e [7]. 

 Maximize:  1)( xW  (3) 

Subject to:    011  uMK   

 
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xV


0
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where 𝑥 gathers the design variables 𝑥𝑒 and the first restriction is the mathematical representation of the free-

vibration dynamic problem. The volume inequality restriction is different from the usual maximum volume 

fraction and imposes a minimum final volume fraction 𝑉𝑓. This procedure is necessary since imposing an increment 

on the vibration frequency forces the solution to infeasible low densities. 

The global matrices 𝐾 and 𝑀, respectively of stiffness and mass, can be defined by: 

 eK


n

1e

p
e )(x=K    (4) 

 eM
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1e
e )(x=M    (5) 

where 𝐾𝑒 and  𝑀𝑒 are respectively the stiffness and mass matrices of the element and 𝑝 > 1 a penalization factor 

used as a solution of the intermediate densities [6]. 

5.1 Sensitivity analysis 

The sensitivity of the objective function with respect to one of the design variables can be calculated by: 

 
 

11

,1010
1T

e1,

e

1
e

u

dx

d
s  

Muu

uMKpx

T

e
p
e  





  (6) 

where 𝑢1,𝑒 are the displacements of the first vibration mode corresponding to the element, obtained from the  

Solution of the equilibrium system of equations [1] e [8]. 

5.2 Optimality Criteria 

The Optimality Criteria (OC) method was chosen to update the design variables in the optimization 

procedure. It gathers the sensitivities of the objective function with respect to the design variables with the 

imposition of the volume fraction restraint such that the densities are updated as 𝑥𝑒,𝑛𝑒𝑤 = 𝐵𝑒
𝜂

𝑥𝑒,𝑜𝑙𝑑 and 
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The Lagrange Multiplier 𝜈 can be found by an intersection algorithm so that the volume fraction restriction 

can be obeyed and the updated values 𝑥𝑒,𝑛𝑒𝑤 must obey the minimum and maximum restrictions [1] e [6]. 

6  Results and discussions 

A beam fixed on both sides, discretized in a mesh of 50 by 20 elements, was modeled in order to maximize 

the second eigenfrequency, subject to a volume fraction and a penalty respectively equal to 0.5 and 3. Figure 3 

presents the result in the post-processing stage and Figure 4 displays the optimized result after applying the mesh 

independence filter and sensitivity analysis. Figure 5 presents the history of convergence of the critical natural 

frequency estimated at each iteration according to the updated densities of the discretized mesh elements associated 

with the second eigenvalue. 

 

 

Figure 3. The result without the post-processing 

phase 

 

Figure 4. The result in the post-processing stage 

 

7  Final considerations 

In this work, the topological optimization method is formulated based on the dynamic response of the two-

dimensional structure subjected to volume restrictions, maximizing the natural or fundamental frequency, avoiding 

the possibility of resonance when the beam is subject to low amplitudes of vibration or excitation. The proposed 

formulations and the examples analyzed proved effective, similar to those found in the literature, therefore 

contributing to the validation of the model. 

More work is needed in the application of the model, since the obtained geometries still present feasibility 

problems. 
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