
A general purpose library for solving multiphysics problems

Gustavo P. Exel, Hermı́nio T. Honório, Clovis, R. Maliska

Dept. of Mechanical Engineering, Federal University of Santa Catarina
R. Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
gustavoexelgpe@gmail.com, herminio.eng@gmail.com, clovis.maliska@gmail.com

Abstract. This article presents a numerical library specifically developed for solving partial differential equations
(PDEs) using the Element-based Finite Volume Method (EbFVM). The library supports two and three-dimensional
unstructured grids composed of different types of elements. The user is responsible for providing the mesh file,
boundary and initial conditions, the physical properties and typing the model equations in a math-like text format.
The library is responsible for integrating the equations in time and space, obtaining the set of algebraic equations,
assembling the linear system and running the simulation. In this manner, the user is not required to possess
any previous knowledge of the underlying numerical scheme, i.e. the EbFVM. Another appealing feature is that
coupled multiphysics problems can be easily configured through a user-friendly interface.

For demonstration purposes, we present three well known test cases. In the first one we solve a simple heat
conduction problem with the main goal of introducing the basic guidelines of the library. Next, we present the
procedure for solving a linear elasticity problem, in which the three displacement components are the unknowns.
Finally, a coupled consolidation problem modelled by Biot’s [1] equations is presented. In this case, the un-
knowns are pressure and displacements, which is easily handled by the library. We remark that, to the best of our
knowledge, there is no general purpose and open source code available on the internet that uses the EbFVM as a
numerical scheme.

Keywords: Element-based Finite Volume Method, Numerical Methods, Multiphysics, Physics Coupling

1 Introduction

Mathematical formulations for physical problems are often expressed in the form of partial differential equa-
tions (PDEs). This happens because the formulations relate physical properties at neighboring points in time
and space. Examples of equations expressed by PDEs are thermal (diffusion, heat conduction, fluid mechanics),
structural, electromagnetic and wave phenomena.

In addition to the examples mentioned above for PDE applications, in different situations, it is important to
couple different physics, for example: thermal expansion (couples thermal conduction equations with mechanical
equilibrium equations), geomechanics (couples fluid mechanics equations with mechanical equilibrium equations)
and the simulation of an electric motor (which can couple equations of electromagnetism, solid mechanics and
heat conduction).

However, the analytical solutions to these problems are limited to simple problems, and are not found for
more complex configurations, and therefore there is a need for numerical methods to solve these PDEs. Among
the most common formulations are the finite volume method, the finite difference method, and the finite element
method, and all their respective variants.

There are already consolidated software for numerical simulation, among which are some commercial soft-
ware such as Ansys and FlexSim, as well as open source simulation software such as OpenFOAM, PorePy, FEniCS,
DUNE. In the programs listed previously (with the exception of FEniCS and OpenFOAM) the user must choose a
previously implemented model that best suits the desired situation, and enter the settings of their problem to solve
it. The proposal in this paper is similar to the FEniCS and OpenFOAM approach, which consists of receiving the
user’s differential equations instead of choosing a previously implemented model.

The proposed library, called bellbird, is written in Python (known for its ease of use), and uses the Element-

CILAMCE-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

A general purpose library for solving multiphysics problems

based Finite Volume Method, which unlike the finite element and finite difference method guarantees conservation
laws even for less refined meshes (by integrating the equations in the conservative form). The user must inform
the system of differential equations to be solved, the initial and boundary conditions, the properties of the medium
and the mesh, and the library generates a solver for the informed problem, which can be then modified by the user
as needed.

In section 2 of this article, the characteristics of the numerical method will be presented, in section 3 it will
be explained how the library is used, in section 4 some numerical examples will be solved, and in section 5 the
conclusions will be presented.

2 Element-based Finite Volume Method

The Element-based Finite Volume method (see Maliska [2] and Honório [3]) uses a cell vertex approach (see
Fig. 1), which means that the vertices (which store the variables) are at the center of the control volumes. Fur-
thermore, the EbFVM also uses shape functions to approximate the field values and derivatives (just like the finite
element method, hence the ”element” similarity in the naming). Another signature of the method is integrating the
differential equations in the conservative form, and using Gauss’s divergence theorem on the appropriate terms.

Figure 1. Geometrical Entities used in the EbFVM

3 Bellbird

The method used to discretize and solve the differential equations, while simple, can become quite extensive
as we increase the complexity of the PDE system. The chance of implementation errors can increase, and imple-
mentation becomes rather unfriendly. As it is a very methodical process, it is possible to automate the entire step of
integration and discretization of the differential equations, as well as their numerical implementation in code. For
that, from the differential equations, the library creates a solver for the problem, informing the initial and boundary
conditions, properties of the medium and mesh, solves the problem and exports the results. An example of usage
will be shown below.

Consider the problem of heat conduction through a solid body modelled by the heat equation:

∇ · (k∇T) + q′′′ − ρcp
∂T

∂t
= 0. (1)

Using the initial condition T (x, y, 0) = 300K, the boundary conditions T (0, y, t) = 350K, T (1, y, t) =

400K and ∂T (x,0,t)
∂y = ∂T (x,1,t)

∂y = 0 in a 2D 1m × 1m plate, and ρ = 8970.0kg/m3, cp = 377.0J/kg·K,
k = 22.0W/m·K, q = 0.0W/m3 the problem would be solved as such:

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

G. Exel, H. Honório, C. Maliska

1 import bellbird
2

3 model = bellbird.Model(
4 name = "Heat Transfer",
5 equationsStr = ["k * div(grad(T)) + q = rho * cp * d/dt(T)"],
6 variables = ["T"], # temperature [K]
7 properties = {
8 "Body":{
9 "k" : 22.0, # [W/m.K] - conductivity

10 "rho" : 8960.0, # [kg/m3] - density
11 "cp" : 377.0, # [J/kg.K] - specific heat
12 "q" : 0.0, # [W/m3] - heat generation
13 },
14 },
15 boundaryConditions = [
16 bellbird.InitialCondition("T", 300.0),
17 bellbird.BoundaryCondition("T", bellbird.Dirichlet, "West", 350.0),
18 bellbird.BoundaryCondition("T", bellbird.Dirichlet, "East", 400.0),
19 bellbird.BoundaryCondition("T", bellbird.Neumann, "South", 0.0),
20 bellbird.BoundaryCondition("T", bellbird.Neumann, "North", 0.0),
21],
22 meshPath = "mesh.msh",
23 timeStep = 1000.0,
24 tolerance = 1e-4,
25 sparse = False,
26)
27

28 model.run()

The mesh is generated by Gmsh, and the results can be read using Paraview

4 Numerical Examples

Now we’re going to solve some problems to show the ease of use of the library.

4.1 Beam Load

Consider a solid beam fixed in the ground, and with a load applied to its end in the downwards direction. We
can model the phenomenon from the elastic equation:

∇·
[
C
(
∇u+∇uT

)]
+ ρg = 0, (2)

with C being the constitutive tensor, u the displacement vector, ρ the beam density and g the gravity vector.
Where σL = 10kN is the load applied, and the dimensions of the beam are L = 1m, h = 0.1m and

a = 0.1m. Bellow the implementation of this problem using bellbird is shown.

1 import bellbird
2

3 model = bellbird.Model(
4 name = "Beam Load",
5 equationsStr = [
6 "div(Ce * grad_s(u)) + rho * g = vec(0)",
7],
8 variables = ["u_x", "u_y"],
9 definitions = [

10 "g = np.array([0.0, -9.81])",
11 "lame_p = 2*G*nu/(1-2*nu)",
12 "Ce = np.array([[2*G+lame_p, lame_p, 0], [lame_p, 2*G+lame_p, 0], [0, 0, G]])"
13],
14 properties = {
15 "Body":{
16 "rho": 1800.0,
17 "nu": 0.4,
18 "G": 6.0e+06,

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

A general purpose library for solving multiphysics problems

19 },
20 },
21 boundaryConditions = [
22 bellbird.InitialCondition("u_x", 0.0),
23 bellbird.BoundaryCondition("u_x", bellbird.Dirichlet, "West", 0.0),
24 bellbird.BoundaryCondition("u_x", bellbird.Dirichlet, "East", 0.0),
25 bellbird.BoundaryCondition("u_x", bellbird.Neumann, "South", 0.0),
26 bellbird.BoundaryCondition("u_x", bellbird.Neumann, "North", 0.0),
27 bellbird.InitialCondition("u_y", 0.0),
28 bellbird.BoundaryCondition("u_y", bellbird.Neumann, "West", 0.0),
29 bellbird.BoundaryCondition("u_y", bellbird.Neumann, "East", 0.0),
30 bellbird.BoundaryCondition("u_y", bellbird.Dirichlet, "South", 0.0),
31 bellbird.BoundaryCondition("u_y", bellbird.Neumann, "North", 1e4),
32],
33 meshPath = "mesh.msh",
34)
35

36 model.run()

Figure 2. Beam Load Example

4.2 Cryer Sphere

The next problem consists of a consolidation problem for a spherical soil sample, proposed by Cryer in 1963,
and serves as a good benchmark in the geomechanical simulation scenario. The mass conservation equation (for
solid and fluid) and Newton’s second law are coupled through Darcy’s law and Terzaghi’s effective stress principle.
The equations are shown below:

1

M

∂p

∂t
+ α

∂

∂t
(∇·u) +∇·

[
K

µ
(ρg −∇p)

]
= 0. (3)

WhereM is the Biot modulus, p is the pore pressure, t is time, α is the Biot’s coefficient, u is the displacement
vector, K is the permeability tensor, µ is the fluid’s viscosity, ρ is the density of the medium and g is the gravity
vector.

∇·
[
C
(
∇u+∇uT

)
+ αpI

]
+ ρg = 0, (4)

with C being the constitutive tensor, and I the identity tensor.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

G. Exel, H. Honório, C. Maliska

Figure 3. Cryer Sphere Problem

The way this problem is implemented with bellbird is shown below.

1 import bellbird
2

3 model = bellbird.Model(
4 name = "Cryer Sphere",
5 equationsStr = [
6 "(1/M) * d/dt(p) + alpha*d/dt(div(u)) + div((k/mu) * (rho*g - grad(p))) = 0",
7 "div(Ce*grad_s(u)) - grad(alpha*p) + rho * g = vec(0)",
8],
9 variables = ["u_x", "u_y", "u_z", "p"],

10 definitions = [
11 "g = np.array([0.0, 0.0, 0.0])",
12 "lame = 2*G*nu/(1-2*nu)",
13 "Ce = np.array([[2*G+lame, lame, lame, 0.0, 0.0, 0.0], [lame, 2*G+lame, lame, 0.0,

0.0, 0.0], [lame, lame, 2*G+lame, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, G, 0.0, 0.0], [0.0, 0.0,
0.0, 0.0, G, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, G]])",

14

15 "rho = phi * rhof + (1-phi) * rhos", # medium density
16 "K = 2*G*(1 + nu) / 3*(1-2*nu)", # Bulk modulus
17 "cb = 1 / K", # Bulk compressibility
18 "alpha = 1 - cs / cb", # Biot coefficient
19 "M = 1/(phi * cf + (alpha-phi) * cs)", # Biot modulus
20],
21 properties = {
22 "Body":{
23 "nu": 2.0e-1, # Poisson’s ratio (Soil)
24 "G": 6.0e+9, # Shear modulus (Soil)
25 "cs": 0.0, # Compressibility (Soil)
26 "phi": 1.9e-1, # Porosity (Soil)
27 "k": 1.9e-15, # Permeability (Soil)
28 "rhos": 2.7e+3, # Density (Soil)
29 "cf": 3.0303e-10, # Compressibility (Fluid)
30 "mu": 1/1.0e-03, # Viscosity (Fluid)
31 "rhof": 1.0e+3, # Density (Fluid)
32 },
33 },
34 # ...
35 # Define boundary conditions, the mesh path, the time step, and the tolerance
36 # Zero displacement prescribed in the normal direction to the flat surfaces of
37 # the eight of the sphere. Zero tension in the other faces.
38 # Zero pressure gradient in all of the faces.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

A general purpose library for solving multiphysics problems

Figure 4. Internal pressure over time

5 Conclusions

The presented approach allows an easier implementation of the element-based Finite Volume Method, which
had not been found in the literature. The computational tools developed help not only in the implementation of
terms from different differential equations, but also in the effortless coupling of different physics. The library still
has some disadvantages, such as the need to prepare it for the implementation of new terms. The Navier-Stokes
equations, for example, cannot yet be implemented using the library, as there are terms in the equations that need
to be studied and implemented, but the implementation can be done, thus allowing the formulation of equations
involving advective terms.

Another improvement that can be made in the library is to allow the implementation of non-linear equations
through iterative methods. Currently, only linear equations are easily implemented, but otherwise the library
generates a user-accessible script and easily implements an iterative loop that can solve non-linear equations using
iterative methods.

In general, Bellbird allows the introduction of engineers to the finite volume method, which can serve as a
basis for other studies, as it was already being used by other fellows in the SINMEC laboratory.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] M. A. Biot. General theory of three-dimensional consolidation. Journal of applied physics, vol. 12, n. 2, pp.
155–164, 1941.
[2] C. Maliska. Transferência de calor e mecânica dos fluidos computacional. 2ª. Edição. Rio de Janeiro: Livros
Técnicos e Cientı́ficos Editora, vol. 200, 2004.
[3] H. T. Honório and others. A stabilization technique for treating numerical instabilities in three-dimensional
poroelasticity, 2018.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

	Introduction
	Element-based Finite Volume Method
	Bellbird
	Numerical Examples
	Beam Load
	Cryer Sphere

	Conclusions

