

CILAMCE-PANACM-2021
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

PYTHON ALGORITHM FOR CALCULATION OF INTERNAL
FORCES AND DISPLACEMENTS IN BEAMS USING THE FINITE
ELEMENT METHOD

Diego R. Figueira, Maria S. M. Sampaio

Department of Civil Engineering, School of Technology, University of Amazonas State
Darcy Vargas Avenue, 69050-020, Amazonas/Manaus, Brazil
drfg.eng@uea.edu.br, msampaio@uea.edu.br

Abstract. A beam finite element under linearly distributed loading is presented. The finite element has two nodes
and two degrees of freedom per node, totaling four degrees of freedom per element. The nodal parameters are
translations and rotations. A cubic polynomial and a linear polynomial are used, respectively, to approximate the
solutions of the problem and describe the loading. The total potential energy functional and the stationarity
principle of energy are used to obtain the finite element equations system. Python 3.9.0 programming language
and PyCharm IDE 2020.2 are used to implement the developed algorithm. After determining the problem
unknowns by solving the system of equations, the internal forces and support reactions are determined in the post-
processing phase. To validate the implemented code, a simply supported beam subjected to a uniformly distributed
load was chosen. The results shown by the algorithm were compared with analytical and FTOOL solutions, and
show that the code was successfully implemented.

Keywords: Python algorithm, Finite Element Method, beams, structural analysis

1 Introduction

Engineering programs related to structural analysis help the user to find solutions for a given problem. Many

engineering problems can be expressed in terms of partial differential derivatives and have analytical solution.
However, in real problems, this feature is not observed and it is necessary to use a numerical tool to obtain
approximate solutions to the problem. A very widespread tool for calculating approximate solutions is the Finite
Element Method (FEM). Its main characteristic is to divide a body into finite elements, connected by nodes, and
obtain an approximate solution to the analyzed problem. By dividing the body into elements, so that they can be
studied one by one at the intersection of nodes, the analysis becomes more precise and specific for critical points.
According to Martha [1], the (FEM) is used to analyze different types of engineering problems such as:
displacements and stresses in mechanical parts, dams, mines, towers, buildings and roofs.

There are different methods to derive the finite element system of equations, among them the variational
methods and the weighted residuals method stand out. In this paper an energy method was used to derive the
system of equations of beam finite element. This method consists of writing the functional total potential energy
of the element and applying the Principle of Energy Stationarity. The principle of energy stationarity states that of
all displacements fields which satisfy the prescribed constraint conditions, the correct state is that which makes
the total energy of the structure a minimum. The choice of an energy method is due to the simplicity of the physical
concepts of external work and strain energy involved in this formulation when compared to the mathematical
refining of other methods.

 So, the main purpose of this paper is to develop a computational code in Python, so that it can calculate the
internal forces, support reactions and displacements in beams using the FEM.

Python algorithm for calculation of internal forces and displacements in beams using the Finite Element Method

CILAMCE-PANACM-2021
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

2 Beam finite element formulation and Python algoritm

2.1 Beam finite element formulation

According to ABNT NBR 6118 [2], a beam is a linear element in which bending is dominant, that is, physical
effort in which the deformation occurs perpendicularly to the axis of the body. Geometrically, linear element is
one in which the linear length is at least three times greater than the largest dimension of the cross section. For
particular cases of geometry, loading and boundary conditions, these structures have analytical solutions.
However, in real structures, such feature is not observed being necessary to use numerical tools to obtain an answer
to the problem.

According to Moraes [3], the conceptual study of the finite element method theory is increasingly relevant
for the analysis of structures, as these concepts are present in practically all available software and, undoubtedly,
can and should be used as indispensable tools in the daily life of the structural engineer. According to the author,
the FEM is based on a discretization of domains, and may have arbitrary irregular geometries, thus generating
basic polynomial elements, which allow, through the resolution of the approximations in their nodes, to arrive at
an approximate behavior of the structure as a whole. When using the finite element method, whenever possible,
depending on the properties of the element, an approximate satisfactory solution with the smallest possible number
of elements should be reached. This must be done in order to save computational resources and still achieve
realistic results.

So, let a beam finite element of length (L), Young modulus (E) and inertial moment (I) be subjected to a
linearly distributed load q(x) as shown in Fig. 1a. Since, by hypothesis, the beam is subjected to bending forces,
the nodal parameters associated with nodes i and j of this finite element are rotations and translations (Fig. 1b).

Figure 1. Beam finite element under a linearly distributed load and nodal parameters.

The total energy functional i for this beam element is given by Eq. 1:

L L x i x i2

i x j x j0 0

1
EI u dx qudx Pu(x) Mu (x)

2

 

 
       (1)

where, the first term after the equality is the strain energy of the beam element and the following terms are,
respectively, the work done by the linearly distributed loading, the work done by the loads applied to the nodes,
and the work done by the bending moments applied to the nodes.

For this element, a third degree polynomial is adopted as the approximation function of the displacements
and a linear polynomial is adopted as the approximation function of the linearly distributed load q(x). These
approximations are given respectively in Eqs. (2) e (3):

 3 2u(x) v(x) ax bx cx d     (2)

 0 1q(x) a x a  (3)

In Eqs. (2) and (3) a, b, c, d, a0 e a1 are constant obtained from the boundary conditions of the finite

element (Fig. 1b) and the linearly distributed load (Fig. 1a), respectively.
Applying the boundary conditions in Eqs. (2) e (3), performing all necessary operations and rewriting the

approximations obtained in a dimensionless coordinate system with x l  , we obtain, respectively:

Diego R. Figueira, Maria S. M. Sampaio

CILAMCE-PANACM-2021
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

        2 3 2 3 2 3 3 2
i i j jv() 1 3 2 w 2 l 3 2 w l                     (4)

   i jq() 1 q q     (5)

Equation 4 can be written as:

m

j j
j 1

v  


 (6)

where j are the nodal parameters and j are the shape functions.

Deriving Eq. (4) twice, substituting this result and Eq. (5) in Eq. (1), making the square, integrating,

minimizing the functional, that is, deriving in relation to the unknowns i i j jw , , w ,   , one arrives at a system

of equations written in matrix form as:

3 2 3 2

2 2
2 2

3 2 3 2

2 2

7 312 6 12 6

20 20
1 16 4 6 2

20 30
12 6 12 6 3 7

20 20
6 2 6 4 1

30





   
                     

       
         

  
 

i j

i i

i j
i i

j j
i j

j j

EI EI EI EI
Lq Lq

L L L L
w PEI EI EI EI

L q L qML LL L
w PEI EI EI EI

Lq Lq
ML L L L

EI EI EI EI
L

L LL L
2 21

20

 
 
 
 
 
 
 
 
 
 
 i jq L q

 (7)

wich can be conveniently rewrite as:

        K u F Q (8)

where  K is the element stiffness matrix,  u is the element nodal displacements vector,  F is applied load

vector and  Q is the linearly distributed load vector.

Finally, for each finite element i, a functional i is assembled that, added to the other finite elements, form

the functional  for the entire domain (Eq. 9). For more details the authors suggest to consult Assan [4].

n

i
i 1

   (9)

2.2 Computational implementation

Kay [5] emphasizes that “Python is an object-oriented and open source programming language often used
for rapid application development. Having simple syntax, with an emphasis on readability, reduces the cost of
maintaining the program, while its vast library of functions encourages reuse and extensibility”.

Because of these characteristics, the beam finite elemento formulation was implemented in Python 3.9.0 and
PyCharm 2020.2 The proposed algoritm can be subdivided into three phases, that is, pre-processing, processing
and post-processing. Figire 2 shows a flowchart of the steps of the developed program. In the pre-processing phase,
the discretization and the physical and geometric properties of the problem are provided and then, used by the
processing phase to determine the unknowns of the problem. Finally, in the post-processing phase, the unknowns,
which are nodal displacements, are used to determine the internal forces and support reactions.

It is important to mention that the contributions to the global matrix are effected through the incidence rules
that relate the nodes of a given element with its final position in the global system of the structure. These incidence
rules can be seen in Fig. 3 e the related subroutine in Python is shown in Fig. 4. For more details the authors
suggest to consult Soriano [6].

Python algorithm for calculation of internal forces and displacements in beams using the Finite Element Method

CILAMCE-PANACM-2021
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

Figure 3. Incidence rules

Figure 2. Algoritm flowchart

Figure 4. Global Matrix in Python

3 Numerical Example

A bi-supported beam under uniformly distributed load shown in Fig. 5 is analyzed by the implemented
formulation. The adopted geometrical properties are L = 4 m, b = 0,20 m and h = 0,40 m. The transverse applied
load and the Young Modulus are given, respectively, by q = 10 kN/m and E = 28 GPa.

Figure 5. Bi-supported beam under uniformly distributed load

The solutions obtained with the implemented formulation are compared with the FTOOL [7] solution and

analytical solution from Strength of Materials as can be consulted in Hibbeler [8], that is:

  
4 3

3 2 3
máx máx

qx 5qL qL
u x 2Lx L ; u ;

24 EI 384 EI 24 EI

 

      (10)

Analyzing the relative differences obtained for maximum displacement and rotation, internal forces and
support reactions for a mesh with two elements regarding the reference solutions (Table 1) it is possible to conclude
that the implemented formulation is returning consistent solutions.

Although the results are satisfactory, it is important to remember that FEM provides discrete solutions as a
function of the chosen discretization and that at the limit of the discretization the numerical solution tends to the
analytical solution. To demonstrate these characteristics, the beam was discretized into uniform meshes with 2, 4,
8, 16, 32, 64, 128, 256, 512 and 1024 elements. The behavior of the displacement solution according to the mesh
refinement can be seen in Figure 6.

Diego R. Figueira, Maria S. M. Sampaio

CILAMCE-PANACM-2021
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021

Table 1. Numerical and analytical values for selected points: analysis of results.

Figure 6. Beam displacements for different discretizations.

4 Conclusions

A beam finite element formulation in Python language was successfully implemented as it is possible to
conclude from the analysis of the obtained results. From the values in Table 1, it was possible to verify that the
algorithm made in Python proved to be efficient, since the values of vertical reaction in the nodes, deformation,
rotation and internal forces were close to or equal to the analytical solution and the Ftool software, confirming that
the algorithm can be used to calculate internal forces displacements of a beam.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the
authorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1]MARTHA, L.F. Análise de Estruturas: Conceitos e Métodos Básicos. Rio de Janeiro: Elsevier, 2010.
[2]ABNT NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro, 2014.
[3]MORAES, A.J. “O Método dos Elementos Finitos e a Engenharia Civil”. Revista Especialize On-line IPOG –
Goiânia, v. 01, n. 10, dez. 2015.
[4]ASSAN, A. E. Método dos Elementos Finitos: primeiros passos. Campinas, S.P: Editora da UNICAMP, 1999.
[5]KAY, R. “Python”. Computerworld, May 2, 2005. Available at:
https://www.computerworld.com/article/2556925/python.html. Accessed on: August 14, 2021.
[6]SORIANO, H.L. Formulação Matricial e Implementação Computacional. Rio de Janeiro: Editora Ciência
Moderna, 2005.
[7]FTOOL. Disponível em: https://www.ftool.com.br/Ftool.
[8]HIBBELER, R.C. Resistência dos Materiais. 7a. Ed. São Paulo: Pearson Prentice Hall, 2010.

 Python
Algorithm

Analytical
Solution

Relative
diference (%)

Software
FTOOL

Relative
diference (%)

Vertical reaction
in x = 0 (kN)

20,00001632 20,0 0,0000816% 20,0 0,0000816%

Deflection in
x = 2 m (mm)

1,116037 1,116071 0,00304% 1,116071 0,00304%

Rotation in
x = 0 (rad)

8,928299x10-4 8,928571x10-4 0,0030% 8,928571x10-4 0,0030%

Shear force
in x = 0 (kN)

20,00001632 20,0 0,0000816% 20,0 0,0000816%

Bending moment
in x = 2 m (kN.m) 20,000006726 20,0 0,00003363% 20,0 0,00003363%

