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Abstract. A beam finite element under linearly distributed loading is presented. The finite element has two nodes 
and two degrees of freedom per node, totaling four degrees of freedom per element. The nodal parameters are 
translations and rotations. A cubic polynomial and a linear polynomial are used, respectively, to approximate the 
solutions of the problem and describe the loading. The total potential energy functional and the stationarity 
principle of energy are used to obtain the finite element equations system. Python 3.9.0 programming language 
and PyCharm IDE 2020.2 are used to implement the developed algorithm. After determining the problem 
unknowns by solving the system of equations, the internal forces and support reactions are determined in the post-
processing phase. To validate the implemented code, a simply supported beam subjected to a uniformly distributed 
load was chosen. The results shown by the algorithm were compared with analytical and FTOOL solutions, and 
show that the code was successfully implemented. 
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1  Introduction 

 
Engineering programs related to structural analysis help the user to find solutions for a given problem. Many 

engineering problems can be expressed in terms of partial differential derivatives and have analytical solution. 
However, in real problems, this feature is not observed and it is necessary to use a numerical tool to obtain 
approximate solutions to the problem. A very widespread tool for calculating approximate solutions is the Finite 
Element Method (FEM). Its main characteristic is to divide a body into finite elements, connected by nodes, and 
obtain an approximate solution to the analyzed problem. By dividing the body into elements, so that they can be 
studied one by one at the intersection of nodes, the analysis becomes more precise and specific for critical points. 
According to Martha [1], the (FEM) is used to analyze different types of engineering problems such as: 
displacements and stresses in mechanical parts, dams, mines, towers, buildings and roofs. 

There are different methods to derive the finite element system of equations, among them the variational 
methods and the weighted residuals method stand out. In this paper an energy method was used to derive the 
system of equations of beam finite element. This method consists of writing the functional total potential energy 
of the element and applying the Principle of Energy Stationarity. The principle of energy stationarity states that of 
all displacements fields which satisfy the prescribed constraint conditions, the correct state is that which makes 
the total energy of the structure a minimum. The choice of an energy method is due to the simplicity of the physical 
concepts of external work and strain energy involved in this formulation when compared to the mathematical 
refining of other methods. 

 So, the main purpose of this paper is to develop a computational code in Python, so that it can calculate the 
internal forces, support reactions and displacements in beams using the FEM. 
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2  Beam finite element formulation and Python algoritm 

2.1 Beam finite element formulation 

According to ABNT NBR 6118 [2], a beam is a linear element in which bending is dominant, that is, physical 
effort in which the deformation occurs perpendicularly to the axis of the body. Geometrically, linear element is 
one in which the linear length is at least three times greater than the largest dimension of the cross section. For 
particular cases of geometry, loading and boundary conditions, these structures have analytical solutions. 
However, in real structures, such feature is not observed being necessary to use numerical tools to obtain an answer 
to the problem. 

According to Moraes [3], the conceptual study of the finite element method theory is increasingly relevant 
for the analysis of structures, as these concepts are present in practically all available software and, undoubtedly, 
can and should be used as indispensable tools in the daily life of the structural engineer. According to the author, 
the FEM is based on a discretization of domains, and may have arbitrary irregular geometries, thus generating 
basic polynomial elements, which allow, through the resolution of the approximations in their nodes, to arrive at 
an approximate behavior of the structure as a whole. When using the finite element method, whenever possible, 
depending on the properties of the element, an approximate satisfactory solution with the smallest possible number 
of elements should be reached. This must be done in order to save computational resources and still achieve 
realistic results. 

So, let a beam finite element of length (L), Young modulus (E) and inertial moment (I) be subjected to a 
linearly distributed load q(x) as shown in Fig. 1a. Since, by hypothesis, the beam is subjected to bending forces, 
the nodal parameters associated with nodes i and j of this finite element are rotations and translations (Fig. 1b). 
 

 

 

 

Figure 1. Beam finite element under a linearly distributed load and nodal parameters. 

The total energy functional i  for this beam element is given by Eq. 1: 
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where, the first term after the equality is the strain energy of the beam element and the following terms are, 
respectively, the work done by the linearly distributed loading, the work done by the loads applied to the nodes, 
and the work done by the bending moments applied to the nodes. 

For this element, a third degree polynomial is adopted as the approximation function of the displacements 
and a linear polynomial is adopted as the approximation function of the linearly distributed load q(x). These 
approximations are given respectively in Eqs. (2) e (3): 
 

 3 2u(x) v(x) ax bx cx d      (2) 

 0 1q(x) a x a   (3) 

 
In Eqs. (2) and (3) a, b, c, d, a0 e a1 are constant obtained from the boundary conditions of the finite 

element (Fig. 1b) and the linearly distributed load (Fig. 1a), respectively. 
Applying the boundary conditions in Eqs. (2) e (3), performing all necessary operations and rewriting the 

approximations obtained in a dimensionless coordinate system with x l  , we obtain, respectively: 
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        2 3 2 3 2 3 3 2
i i j jv( ) 1 3 2 w 2 l 3 2 w l                      (4) 

   i jq( ) 1 q q      (5) 

 
Equation 4 can be written as: 

 
m

j j
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where j  are the nodal parameters and j  are the shape functions. 

Deriving Eq. (4) twice, substituting this result and Eq. (5) in Eq. (1), making the square, integrating, 

minimizing the functional, that is, deriving in relation to the unknowns i i j jw , , w ,     , one arrives at a system 

of equations written in matrix form as: 
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wich can be conveniently rewrite as: 
 

        K u F Q  (8) 

 
where  K  is the element stiffness matrix,  u  is the element nodal displacements vector,  F  is applied load 

vector and  Q is the linearly distributed load vector. 

Finally, for each finite element i, a functional i  is assembled that, added to the other finite elements, form 

the functional   for the entire domain (Eq. 9). For more details the authors suggest to consult Assan [4]. 
 

 
n

i
i 1

    (9) 

2.2 Computational implementation 

Kay [5] emphasizes that “Python is an object-oriented and open source programming language often used 
for rapid application development. Having simple syntax, with an emphasis on readability, reduces the cost of 
maintaining the program, while its vast library of functions encourages reuse and extensibility”. 

Because of these characteristics, the beam finite elemento formulation was implemented in Python 3.9.0 and 
PyCharm 2020.2 The proposed algoritm can be subdivided into three phases, that is, pre-processing, processing 
and post-processing. Figire 2 shows a flowchart of the steps of the developed program. In the pre-processing phase, 
the discretization and the physical and geometric properties of the problem are provided and then, used by the 
processing phase to determine the unknowns of the problem. Finally, in the post-processing phase, the unknowns, 
which are nodal displacements, are used to determine the internal forces and support reactions. 

It is important to mention that the contributions to the global matrix are effected through the incidence rules 
that relate the nodes of a given element with its final position in the global system of the structure. These incidence 
rules can be seen in Fig. 3 e the related subroutine in Python is shown in Fig. 4. For more details the authors 
suggest to consult Soriano [6]. 
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Figure 3. Incidence rules 
 

 
 

Figure 2. Algoritm flowchart 
 

Figure 4. Global Matrix in Python 

3  Numerical Example 

A bi-supported beam under uniformly distributed load shown in Fig. 5 is analyzed by the implemented 
formulation. The adopted geometrical properties are L = 4 m, b = 0,20 m and h = 0,40 m. The transverse applied 
load and the Young Modulus are given, respectively, by q = 10 kN/m and E = 28 GPa. 
 

 

Figure 5. Bi-supported beam under uniformly distributed load 

 
The solutions obtained with the implemented formulation are compared with the FTOOL [7] solution and 

analytical solution from Strength of Materials as can be consulted in Hibbeler [8], that is: 
 

  
4 3
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Analyzing the relative differences obtained for maximum displacement and rotation, internal forces and 
support reactions for a mesh with two elements regarding the reference solutions (Table 1) it is possible to conclude 
that the implemented formulation is returning consistent solutions. 

Although the results are satisfactory, it is important to remember that FEM provides discrete solutions as a 
function of the chosen discretization and that at the limit of the discretization the numerical solution tends to the 
analytical solution. To demonstrate these characteristics, the beam was discretized into uniform meshes with 2, 4, 
8, 16, 32, 64, 128, 256, 512 and 1024 elements. The behavior of the displacement solution according to the mesh 
refinement can be seen in Figure 6. 



Diego R. Figueira, Maria S. M. Sampaio 

CILAMCE-PANACM-2021 
Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

Table 1. Numerical and analytical values for selected points: analysis of results. 

 

 

Figure 6. Beam displacements for different discretizations. 

4  Conclusions 

A beam finite element formulation in Python language was successfully implemented as it is possible to 
conclude from the analysis of the obtained results. From the values in Table 1, it was possible to verify that the 
algorithm made in Python proved to be efficient, since the values of vertical reaction in the nodes, deformation, 
rotation and internal forces were close to or equal to the analytical solution and the Ftool software, confirming that 
the algorithm can be used to calculate internal forces displacements of a beam. 
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 Python 
Algorithm 

Analytical 
Solution 

Relative 
diference (%) 

Software 
FTOOL 

Relative 
diference (%) 

Vertical reaction 
in x = 0 (kN) 

20,00001632 20,0 0,0000816% 20,0 0,0000816% 

Deflection in  
x = 2 m (mm) 

1,116037 1,116071 0,00304% 1,116071 0,00304% 

Rotation in  
x = 0 (rad) 

8,928299x10-4 8,928571x10-4 0,0030% 8,928571x10-4 0,0030% 

Shear force  
in x = 0 (kN) 

20,00001632 20,0 0,0000816% 20,0 0,0000816% 

Bending moment 
in x = 2 m (kN.m) 20,000006726 20,0 0,00003363% 20,0 0,00003363% 


