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Abstract. In structural engineering more and more elements characterized as composites are being used. A 

previous understanding characterizes materials consisting of layers, in general, even varying the nature of the 

materials. The present paper presents an approach for analyzing the structural behavior of a beam formed of 

different materials from 2D modeling in numerical method. A computational implementation of the Boundary 

Element Method (BEM) was developed using the PYTHON programming language. The code "MEC 2D" was 

elaborated using Kelvin's fundamental solution with the use of continuous and discontinuous linear elements for 

the discretization of the boundary and interfaces of the subregions characterizing each material. The BEM 

formulation allows, therefore, the modeling of subregions for the assembly of the domain, in this case, the complete 

beam. The behavior is evaluated from the displacements obtained for the boundary and internal points, as well as 

the stresses, evaluating these fields conveniently in graph form. Applications were performed to test the 

implemented modeling.  
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1  Introduction 

Material properties can be determined by analytical, experimental or computational methods. However, 

analytical methods are limited by materials with simplified microstructure and low heterogeneity density (Milton 

[1]). Thus, in these problems, experimental or computational methods are used to obtain approximate solutions. 

Among the most popular numerical methods of analysis are the Finite Element Method (FEM), Finite Difference 

Method (FDM) and the Boundary Element Method (BEM), Fedelinski et al. [2]. 

The Boundary Element Method (BEM) was presented as an alternative to the domain discretization methods. 

Its formulation allows the problem to be solved by discretizing only the boundary of the region studied, Brebbia 

[3]. By using the BEM, the differential equations that govern the physical problem are transformed into boundary 

integral equations, therefore, taken to the surface of the problem. These integrals are solved at specific points of 

the elements discretized on the boundary. To this end, the BEM uses a weight function, known as the fundamental 

solution, which must meet the differential equation of the problem, but with very particular boundary conditions 

that make it possible to obtain it. The traditional formulation of the BEM allows the discretization of the domain 

in sub-regions that can be, therefore, composed of materials with different physical characteristics (Oliveira [4], 

Almeida [5]). Other techniques were studied in Eischen and Torquato [6], Liu [7] and Gurrum et al. [8]. 

In this context, the present work has the objective of developing a computational program in PYTHON 

language for the analysis of beams composed of different materials, by means of the Boundary Element Method, 

in its two-dimensional formulation for elastic-linear materials and with boundary discretization by discontinuous 

linear elements. The subdomain technique was implemented for the BEM-BEM coupling. The results obtained are 

compared with the results published in the specialized literature. 
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2  Boundary Element Method Formulation 

2.1 The general problem 

It is intended to investigate the behavior of a two-dimensional, homogeneous and isotropic elastic-linear solid 

whose domain is Ω and its respective boundary Γ. The equilibrium of the body characterized in the elastic problem 

can be analyzed from eq. (1), considering j = 1,2, the tensor of stresses 𝜎𝑗𝑖 and body forces 𝑏𝑖. 

𝜎𝑗𝑖,𝑗 + 𝑏𝑖 = 0. (1) 

Let us consider the boundary conditions given in eq. (2a, b), defined as a function of displacements (u) and 

surface tractions (p). Combined with eq. (1), one can analyze the elastic behavior of the body.  

𝑢 = 𝑢, em Γ1  , 
𝑝 = 𝜎 ⋅ 𝑛 = 𝑝, em Γ2 . 

 

(2a, b) 

 

2.2 A numerical solution of the general problem 

In this work, it was chosen to use the Boundary Element Method to analyze the elastic problem enunciated 

in the previous item. With some algebraic operations performed on eq. (1), we arrive at the Somigliana Identity, 

integral equation that governs the problem, eq. (3), which allows the analysis of the body using the variables 

distributed in nodes related to its boundary. 

𝑢𝑙𝑘
𝑖 + ∫ 𝑝𝑙𝑘

∗ ⋅ 𝑢𝑘𝑑𝛤𝛤
= ∫ 𝑢𝑙𝑘

∗ ⋅ 𝑝𝑘𝑑𝛤𝛤
+ ∫ 𝑏𝑘 ⋅ 𝑢𝑙𝑘

∗ 𝑑𝛺
𝛺

. 
(3) 

Using concepts of minimizing errors from weightings in eq. (3), adapting to the BEM that employs in the 

chosen weighting function the so-called fundamental solutions, of a fundamental problem, whose boundary tends 

to infinity. In this work, Kelvin's fundamental solution for two-dimensional elastic problems will be used, 

according to expressions (4a and b). 
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(4a, b) 

where μ is the transverse modulus of elasticity and n is the vector normal to the boundary. 

The study of equation (3) indicates that its application can be identified in the domain (containing the 

boundary) and outside it. Thus, in generalized form for any points, one arrives at eq. (5), 

 
+=+ dubdpudupuc lkkklkklk

i

lk

i

lk

***
, (5) 

where ci
lk is a constant that depends on the position of the source point i, and has value 1 for domain points, ½ for 

boundary points when smooth, and 0 for external points. 

For the application of the numerical method, it is necessary to discretize the problem, determining the points 

(nodes) in which the equations of the solution found will be written. In the case of the boundary, being the problem 

two-dimensional, one-dimensional elements are used for its approximate conformation, appearing, therefore, the 

geometric end points that can be used as functional nodes. Therefore, equation (5) is discretized, assuming the 

non-existence of body forces (bk), obtaining terms only at the boundary and whose variables are nodal surface 

displacements and forces. This new equation can be rewritten matrix-wise in the form of eq. (6), using the 

interpolating functions of the chosen elements and the nodal values of displacements and surface tractions. 

[𝐻]{𝑈} = [𝐺]{𝑃}. (6) 

Apply the boundary conditions to eq. (6), with the appropriate column and row exchanges, and a system of 

linear equations is obtained, according to eq. (7), whose unknowns can be either displacements or surface forces. 

The order of the system reaches 4n x 4n (n representing the number of elements), if a discontinuous linear element 

is used, with two functional nodes for each element. 

[𝐴]{𝑋} = {𝐵}  (7) 
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2.3 Coupling BEM-BEM 

In cases where the domain is composed of several subdomains of materials that present different physical 

characteristics, the use of subregions provides a higher precision to the analysis (Wutzow [9]). For this purpose, 

the boundary discretization of each homogeneous subdomain is performed and the equation of the connections 

between them is imposed by the equilibrium of forces and the compatibility of displacements at all interface points 

between the subregions, as presented in eq. (8) and eq. (9). 

  {𝑃}1𝑖 + {𝑃}2𝑖 = 0 , (8) 

  {𝑈}1𝑖 = {𝑈}2𝑖 . (9) 

The [G] and [H] matrices, representative of each domain independently, are generated, eq.  (10). 

[
[H]11 [H]1𝑖
[H]𝑖1 [H]𝑖𝑖

] {
{𝑢}1

{𝑢}1𝑖
} = [

[G]11 [G]1𝑖
[G]𝑖1 [G]𝑖𝑖

] {
{𝑃}1

{𝑃}1𝑖
} . (10) 

By joining the two systems into one and applying the equilibrium conditions, compatibility and boundary 

conditions, a general system for the two analyzed subregions is obtained, as shown in eq. (11). 

[
 
 
 
 
[H]11

1 [H]1i
1

[H]i1
1 [H]ii

1

−[𝐺]1𝑗
1 [0]

−[𝐺]𝑖𝑖
1 [0]

[0] [𝐻]𝑖𝑖
2

[0] [𝐻]2𝑖
2

[G]ii
2 [H]i2

2

[G]2i
2 [H]22

2 ]
 
 
 
 

{
 

 
{𝑢}1

{𝑢}1𝑖

{𝑃}1𝑖

{𝑢}2}
 

 

 = 

[
 
 
 
 [𝐺]11

1 [0]

[𝐺]𝑖1
1 [0]

[0] [𝐺]𝑖2
2

[0] [𝐺]22
2 ]
 
 
 
 

{
{𝑃}1

{𝑃}2
} . (11) 

The variables relating traction and displacement at the interfaces are assumed to be unknowns for eq. (11). 

Therefore, rewriting the system in a more simplified form, a linear system of equations is obtained, eq. (7), in 

which {X} represents the unknowns vector. 

[𝐴]{𝑋} = {𝐵} (7) repeated 

The above procedure can be performed for every two subdomains, always considering as unknowns the 

variables of tractions and displacements at the interfaces, for as many subdomains as it is desired to discretize the 

body. 

3  Application 

Based on the formulation presented in the previous items, a computational program, written in free software 

language PYTHON, was developed to implement the discontinuous linear element, with the interactions of 

displacements and surface forces for the coupling of subdomains via the subregion’s technique. The "MEC 2D" 

code, therefore, requires a simple computer, a microcomputer, and performs processing at a higher speed than 

platforms whose codes are interpreted. 

To evaluate the use of the Boundary Element Method with the subdomain coupling technique (BEM-BEM) 

to analyze the behavior of beams made of different materials, the problem addressed in Muttashar et al. [10] was 

used. These are beams composed of overlapped (bonded) hollow profiles, here used the cases with two cells.  The 

square profile in vinyl polyester reinforced with fiberglass, has external dimensions 125mm, with 6.5mm thickness 

and longitudinal elasticity modulus equal to 47.2GPa. The models were treated in three approaches: with only the 

vinyl profiles (hollow cross sections); filling of the compressed part with 15MPa and 32MPa concrete. Figure 1 

(a) shows the beam design as taken from Muttashar et al. [10]. The concentrated forces (two), were applied in the 

central region of the beam, with a variation from zero to the failure value (values presented in Table 1). 
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(a)                                                                                 (b) 

Figure 1. Beam analysis following Muttashar et al. [10]: a) definition of the beam in two bonded parts with its 

geometric coordinates and loads; b) definition of the subdomains to be coupled BEM-BEM 

 

Figure 1 (b) shows the configuration in sub-regions (subdomains) for the changes in physical parameters 

required for each material analyzed. The discretization is done in each SD-i using linear elements, observing the 

interface nodes for proper coupling. 

After processing using the computer program developed in PYTHON language for 2D analysis via BEM, 

result values were obtained very close to those referred in Muttashar et al. [10], both for displacements, Table 1, 

and moments, Table 2. Figure 2 shows the graphs of vertical displacements by forces, obtained for the process in 

the BEM and given by the reference. 

 

Table 1. Maximum vertical displacement values for the tested/processed models: comparison between the 

reference (Muttashar et al. [10]) and the BEM 

 

 

Table 2. Maximum moment values for the tested/processed models: comparison between the reference 

(Muttashar et al. [10]) and the BEM 

 

 

Figure 2 shows the displacement values obtained from the failure loads indicated in the study of Muttashar 

et al. [10], by the use of and cited in that work. It is verified the adequacy of the BEM processing to obtain the 

responses obtained in Muttashar et al. [10], with small errors (below 4% on average), observing the values in Table 

1. 

 

Model Pp Pmáx

(kN) Ref. BEM (kN) Ref. BEM

2H_C_0 100 -0.0022950 -0.021467 151.2 -0.0347 -0.032458

2H_C_15 100 -0.019677 -0.019455 217 -0.0427 -0.042217

2H_C_32 100 -0.019386 -0.018732 247.6 -0.048 -0.046380

Maximum Displac. (m) Maximum Displac. (m)

Model Pp Pmáx

(kN) Ref. MEC (kN) Ref. MEC

2H_C_0 100 52.51 53.33 151.2 79.4 80.63

2H_C_15 100 52.53 53.48 217 114 116.05

2H_C_32 100 52.50 53.69 247.6 130 132.94

Max. Bending Mom.  (kN.m) Max. Bending Mom.  (kN.m)
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Figure 2. Graph of the vertical displacements by the load applied to the tested/processed models: comparison 

between the reference (Muttashar et al. [10]) and the BEM. 

4  Conclusions 

The original formulation of the Boundary Element Method leads to simple algorithms for adequate 

computational implementation. The programming language PYTHON, free software, proved to be adequate for 

the computational implementation, constituting a fast code for use on microcomputers. The BEM-BEM coupling 

technique for the subdomains with their respective physical parameters proved to be adequate to allow analysis of 

structures composed of parts of different materials. 

The 2D BEM implementation was used to analyze beams made of two materials and presented results in 

strains and stresses with adequate accuracy, compared to results from published works. 

The use of the BEM to more common engineering problems is adequate to expand the knowledge for the 

analysis of stresses and strains in structures for undergraduate engineering courses. It combines the stronger 

inclusion of numerical methods with the traditional study of the mechanics of bodies deformable. 
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