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Abstract. This paper is concerned with the automated design of steel columns with W or I cross section geometry,
using Genetic Algorithm optimization. Provided with basic design parameters, the algorithm automatically search
for the optimal cross section shape and deliver the most suitable solution, constrained or not by the commercial
shapes available. In order to show the efficiency and reliability of the algorithm, some benchmark examples
were provided. Based on the results and the analysis, the automated design algorithm proved to be a faster and
reliable alternative for designing steel columns with equal load carrying capacity of conventional methods, under
the Brazilian and international standards.
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1 Introduction

The high competitive market of the construction sector require from companies and edge over their competi-
tors, mainly sought by providing more economical designs or higher productivity. The economical design can be
easily implemented on steel elements, since its production is highly standardized and more suitable to optimization
procedures.

In the optimization of structural elements, regardless of the material, a common design objective is the min-
imization of self-weight while satisfying load capacity and serviceability constraints. The optimization procedure
can be based on formal mathematical programming, such as the works of Templeman and Yates [1] and Zhu [2];
or based on principles of stochastic search, like the works of Seaburg and Salmon [3] and Tran and Li [4]. The
stochastic search can be easily applied to discrete problems as a main tool of the Genetic Algorithm.

A number of researches have proposed applying optimization methods to shape selection and design in gen-
eral, most of them considering evolutionary algorithms. Lee et al. [5] used genetic algorithms to search for optimal
channel cross section dimensions for cold-formed steel columns under axial compression and Lee et al. [6] applied
the same approach for beams under uniformly distributed loads. Penalties were employed in the objective function
for violating constraints from the AISI specification [7]. Leng et al. [8] assumed a more complex approach, cou-
pling of optimization algorithms with Direct Strength Method (DSM) and open source software package CUFSM
for the design of cold-formed steel columns. The results were promising although not well suited for design
automation, since unpractical shapes are obtained.

Therefore, there is a clear need for efficient optimization procedures following the Brazilian standards, mainly
for steel structures, in order to help Brazilian engineers to efficiently design steel columns under basic design
premises.

This paper aims to optimize steel columns designated shapes by adjusting the size of the W or I cross section
(depth, width and thickness) subjected to basic design constraints, in order to obtain a minimum cross section area
and thus minimized the weight and consequently the cost. Empowered with the Genetic Algorithm capabilities,
the approach can rapidly design columns and select the most suitable available cross section from the commercial
design tables, on an automated fashion.
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2 Design of steel columns under axial load

This section follows the Brazilian design code for laminated steel structures [9], which is very similar to USA
design code ANSI/AISC 360-05 [7]. Hence, a similar approach can be used for both codes. The design procedure
will be programmed into a MATLAB routine and used later for optimization. Only the Ultimate Limit State is
considered on the routine. The slenderness ratio is given by

λ =
lef
r
, (1)

where lef effective length accounting for buckling and r is radius of gyration. the stress due to the applied
axial compression load

σcd =
Nc
QAg

, (2)

in which Q is the reduction factor for local compression buckling, Ag is the cross-sectional area and Nc is
the factored axial compression load. The reduction factor Q is 1 when local buckling is absent. Although, when
b/t > (b/t)lim, where b is the width and t is thickness of the element, Q assume different values and can be
obtained on NBR8800 [9], also implemented in the design code. The effective non dimensional slenderness ratio

λ0 = λ

√
Qfy
π2E

, (3)

in which fy specified minimum yield stress and E is the modulus of elasticity of steel. The reduction factor
for axial compression for λ0 ≥ 1.5 is given by

χ =
0.877

λ0
2 , (4)

and for λ0 < 1.5

χ = 0.688λ0
2

. (5)

Lastly, the design strength for axial compression

fcd =
χfy
γa1

(6)

can be used to perform a capacity check, where γa1 is the resistance factor to account for material uncertainties;

usually γa1 = 1.1 in most cases.

3 Formulation of optimization problem

The aim of the numerical problem optimization is to minimize the objective function using the column design
routine, by finding the optimal geometrical parameters bf , tf , tw and h, for W sections, as show in Figure 1, such
that the design capacities and limits are satisfied. This paper presents an optimization scheme which is based on
optimal W cross section dimensions, although can be easily extended for other geometrical cross sections.

3.1 Objective function

The appropriate definition of objective functions has a considerable impact on the overall performance of the
optimization process. This Section presents the objective functions considered in this paper, for the optimization
of steel columns under axial compression load.

The defined objective function

φ =

∣∣∣∣σcdfcd − 1

∣∣∣∣ , (7)

in which σcd is the stress due to the axial load and fcd is the design compression strength. Therefore, φ is
always very close to zero, when optimal geometric values are obtained in the optimization. The routine, based
on this objective function, is always searching for the closest cross sectional area presented in commercial design
tables, leading to optimal section choices.
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Figure 1. Geometrical parameters bf , tf , tw and h of a W section.

3.2 Mathematical formulation

The mathematical formulation of the single-objective optimization scheme is defined as follows

minimize φ(bf , tf , tw, h)

subject to bf = bf
min ≤ bf ≤ bfmax

tf = tf
min ≤ tf ≤ tfmax

tw = tw
min ≤ tw ≤ twmax

h = hmin ≤ h ≤ hmax

where bf = (bf 1, bf 2, ..., bfn) ∈ bf

tf = (tf 1, tf 2, ..., tfn) ∈ tf

tw = (tw1, tw2, ..., twn) ∈ tw

h = (h1, h2, ..., hn) ∈ h ,

(8)

in which φ is the resulting geometrical parameter, as presented in subsection 3.1. For the single-objective
optimization, the fitness function, that is the routine containing the design and capacity check for steel columns,
should accept scalar values, and return a scalar (φ), the objective function. Although the routine follow the Brazil-
ian design standards, the same approach could be easily applied to other codes, as seen in Lee et al. [6] and Lee
et al. [5].

Genetic Algorithm (GA) optimization parameters, such as population size, selection function, scaling func-
tion and etc, are different in each optimization scheme and will be properly addressed in section 3.3.

3.3 GA implementation

Genetic Algorithm (GA) is part of evolutionary algorithms and are an optimization technique that is consid-
ered as a non-derivative global search heuristic. GA perform a search and optimization scheme that is motivated by
the principles of natural genetics and natural selection, originally proposed by [10]. They are a robust and flexible
approach that can be applied to a wide range of optimization problems, as seen in Kelner and Leonard [11], McCall
[12] and more recently Oliveira et al. [13].

The approach of the automatic optimization of steel columns under axial compression requires initial data in
order to run, named the axial compression (Nc) in kN, the steel yield stress (fy) in MPa, the Modulus of elasticity
of steel (E) in MPa and the effective length accounting for buckling (lef ) in meters. The algorithm follows
the scheme presented in Figure 2. The geometrical parameters of the W section bf , tf , tw and h are optimized
in a single-objective optimization process, considering the column design routine to evaluate φ as an objective
function. In the end, the routine chooses the closest commercial W cross section between the ones available in
the excel spreadsheet provided, based on the generic design variables obtained. The solution is unique for each
problem depending on the initial input provided by the user.

The initial population is set to 400 individuals and is randomly generated. Then, the fitness function is
calculated for each member of the population and scaled using a rank process, which is used in the selection. A
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Start

Objective Function: φ
Design variables:
bf , tf , tw and h
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(tf , tw) [4mm 25mm]
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Select individual mem-
bers of population us-
ing stochastic selection

Crossover (constrained)

Mutation (constrained)

Creation of a new population
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test
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Figure 2. Flowchart of the routine defined for the fully automated column steel design. The optimization routine
can be found at GitHub.
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stochastic uniform selection is chosen as the reproduction operator. Both mutation and crossover are constraint
dependent. Finally, the optimization process is terminated if the number of generations exceeds the predefined
maximum number of 800, or if the average change in fitness function is less than 1× 10−6.

It is quite important to stress that the accuracy and the efficiency of the proposed algorithm are presented in a
single and fully automated routine that can optimize a steel column and select the best W section without the need
of any manual calculation or additional design parameter. The level of automation can be defined in the beginning
of the algorithm, where you can select if you want individual scalar values for geometrical parameters, stiffened of
unstiffened sections and even if you want to limit for specific sections; or the recommended option, fully automated
results, yielding only the final selected section. Even faster results can be obtained with this routine by using the
MATLAB parallel environment, which performs multiple analyses simultaneously.

4 Numerical results

This section presents numerical results to illustrate the accuracy and efficiency of the automated design rou-
tine, considering practical examples presented by Pfeil and Pfeil [14] and Geschwindner et al. [15]. All applications
were performed using MATLAB 2019a on an Intel Core I7-4700MQ computer with CPU of 2.4GHz and 16 GB
of RAM.

4.1 Example 5.8.1

Consider a W150 X 37.1 kg/m section of ASTM A36 steel (E = 2.0× 104kN/cm2 and fy = 25kN/cm2).
Both extremities are simply supported (fixed) and the column is 3 meters tall. No buckling is allowed on y direction.
The results obtained with the analysis are presented in Table 1 and Figure 3; where Pfeil are the results obtained
by Pfeil and Pfeil [14], GA Generic are the results obtained by the design routine with generic design variables,
GA Table are the results obtained by the design routine considering commercial tables (89 registered sections) and
the column ”sections” represent the selected section by the authors or the algorithm.
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Figure 3. Performance of GA design routine for example 5.8.1. 400 individuals per iteration and 25 generations
are considered.

Table 1. Comparison between the algorithm and the practical problem for example 5.8.1.

Method Section bf (mm) tf (mm) tw (mm) h (mm) Ag (cm2) φ

Pfeil [14] W150 X 37.1 154 11.6 8.1 139 48.85 0.022

GA Generic Custom 239.41 6.11 4.46 209.64 38.6 3.05× 10−8

GA Commercial W200 x 35.9 (H) 165 10.2 6.2 181 45.7 0.0176

The results show that all approaches obtained a satisfactory load carrying capacity, always very close to the
maximum capacity, ensuring an efficient design. As expected, GA with generic values approach obtained the best
result among all options.
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The cross section area (Ag) was also close between different approaches, resulting in 26.55% more area for
Pfeil and 18.4% for GA with commercial tables, when compared to GA with generic values. Moreover, not only
the section selected by the GA with commercial tables is smaller than the section selected by Pfeil, it is also closer
to the maximum capacity (1.7%) and therefore more accurate under the same problem conditions.

Figure 3 show that the optimization algorithm obtained the best fitness on the third generation. Also, con-
vergence between mean fitness and best fitness was obtained after 16 generations, which is a good metric for well
performed optimizations. The routine takes 4 seconds to get the best fitness and 28 seconds to finish 25 generations
using parallel processing. The reduced computational effort highlight the improved performance of the automated
routine when compared to traditional design methods.

4.2 Example 5.4

Lastly, consider a W10 X 49 lb/ft section of ASTM A992 steel (E = 2.0 × 104kN/cm2 and fy =
34.5kN/cm2). For y direction, one end is pinned and the other end is fixed and for x direction both ends are
pinned. The results obtained with the analysis are presented in Table 2 and Figure 4; where Geschwindner are
the results obtained by Geschwindner et al. [15], GA Generic are the results obtained by the design routine with
generic design variables, GA Table are the results obtained by the design routine considering commercial tables
and the column sections represent the selected section by the authors or the algorithm.
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Figure 4. Performance of GA design routine for example 5.4. 400 individuals per iteration and 25 generations are
considered.

Table 2. Comparison between the algorithm and the practical problem for example 5.4.

Method Section bf (mm) tf (mm) tw (mm) h (mm) Ag (cm2) φ

Geschwindner [15] W10 X 49 254 14.224 8.636 225.044 92.9 0.269

GA Generic Custom 231.079 11.251 8.589 349 91.486 6.87× 10−8

GA Commercial W 250 X 73 (H) 177 10.9 7.5 381 67.16 0.0053

Similar results are obtained with both routines, even when different design codes (NBR8800 [9] and ANSI/AISC
360-16 [7]) are considered, where all approaches obtained a satisfactory load carrying capacity. As expected, the
only difference between the results are the standardized commercial sections available, since the design code is
also similar. This result is of paramount importance and highlight the efficiency of the routine for Brazilian and
international standards, requiring only changes in commercial tables for each region.

The best fitness was obtained on the fourth generation, as seen in Figure 4. Furthermore, convergence be-
tween mean fitness and best fitness was obtained after 14 generations, which is a good metric for well performed
optimizations. The routine takes 8 seconds to get the best fitness and 49 seconds to finish 25 generations using
parallel processing.
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5 Conclusion

The automated design of steel columns with W or I cross section geometry, using Genetic Algorithm opti-
mization was presented on this paper. When provided with basic design parameters for particular design problems,
the algorithm automatically search for the optimal cross section shape and deliver the most suitable solution, con-
strained or not by the commercial shapes provided by the user.

Benchmark examples were provided to show the efficiency and reliability of the algorithm. In all examples
and iterations a satisfactory load carrying capacity was achieved. Really accurate results were obtained using the
optimization routine, both constrained and not constrained by commercial tables; getting the same or even better
results than the original design. The efficiency was measure though computational effort during the optimization
process. The automated design routine obtained really fast results, requiring only 3 to 4 generations to obtain the
best values for bf , tf , tw, h and also choosing the best section between 89 options available. The last example show
the minimum difference between the Brazilian design code (NBR8800 [9]) and the USA design code (ANSI/AISC
360-16 [7]), which could greatly increase the scope of the automated routine.

All in all, based on the results and the analysis presented, the automated design algorithm proved to be a faster
and reliable alternative for designing steel columns, with equal load carrying capacity of conventional methods and
proven efficiency, under the Brazilian standards.

The MATLAB routine and design tables developed during this paper are available at GitHub.
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