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Abstract. In the last decades, studies on the double-beam system, which consists of two parallel beams connected
by an elastic layer, have been focus of much researches and applied to a wide variety of engineering problems
such as, adhesively bonded joints, rail on geocell-reinforced earth bed and many others. Different models of one,
two and three parameters have been used to represent the inner connecting layer of the beams and the support
base. In this paper, a finite element formulation is derived assuming the Euler-Bernoulli beam hypotheses to
represent the beams, the Winkler foundation model to idealize the inner layer, and the Kerr elastic foundation
assumptions to model the support base. The double beam finite element has ten degrees of freedom and its stiffness
matrix and equivalent load vector are explicitly shown. Numerical bending analysis for many different load cases,
beam properties, and foundation parameters is done and compared with analytical solution or numerical responses,
according to their availabilities.
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1 Introduction

The variety of applications of the elastically connected double-beam system (DBS) has drawn the attention
of several researchers once DBS can be used to modelled a lot of problems on civil, aerospace and mechanical
engineering. The DBS as a complex continuous system consisting of two parallel solids joined by an elastic
medium treated through beams theories combined with elastic layers models, avoiding to use rigorous models
based on elasticity theory to represent all interaction forces and stresses at interfaces beam-layer-beam.

Based on the Bernoulli-Euler theory, several studies can be found in the literature such as free and/or forced
vibration problems ([1] -[11]), buckling problems [12], free vibration of axially loaded problems ([12] -[14]) and
static bending analysis ([15],[16]), where in all these studies there are only a Winkler elastic layer linking the
beams.

On the other hand, few recent works for double or multiple-beams systems resting on elastic foundations
can be found in the literature. Deng et al. [17] based on Timoshenko beam theory formulate the exact dynamic
stiffness matrix of the double-beam system resting on Winkler-Pasternak elastic foundation under the axial loads.
Bhatra and Maheshwari [18] study the behaviour of the deformation response of rails to concentrated moving
load where the Pasternak layer is used how interconnected beams layer and the foundation is of the Winkler type.
Recently, Chen et al. [19] deal with the forced vibrations of a cracked double-beam system resting on Winkler-
Pasternak elastic foundation based on Bernoulli-Euler beam theory. However, the studies about the DBS resting
on Winkler-Kerr elastic foundations are very rare.

The current investigations is motived by to fill these gaps by studying the bending analysis of an elastically
connected double-beam system resting on Winkler-Kerr foundation. A double-beam finite element (DBSWK)
with ten degree of freedoms is derived and both stiffness matrix and equivalent load vector are explicitly shown.
Numerical solutions of the present FEM are compared with other analytical and numerical solutions available in
literature.
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2 Mathematical formulation

Figure 1. Double-beam system on Winkler-Kerr foundation

In this study, consider an elastically connected double-beam system resting on elastic foundation shown in
the Fig. 1. This system consists of two upper and lower parallel beams assumed to be homogeneous, prismatic and
of the same length L, but they can have different flexural rigidity and boundary conditions. The cinematic behavior
of the cross section can be seen in Fig. 2 where its representation is based on the classical Bernoulli-Euler beam
theory. The elastic connection layer between them is based on the Winkler [20] model while consist in a series of
linear and independent springs with rigidity kw where every point’s reaction is proportional to the point’s displace-
ment. The elastic foundation is represented by the Kerr [21] model where three independent parameters represent
the restoring force of the foundation, two linear elastic layers of constants kc and kk, respectively, interconnected
by a unit thickness shear layer of constant Gs.

Figure 2. Cinematic of the cross section

According to Bernoulli-Euler beam theory the displacements field is given by [22]:

u(x, z) = zφy(x), (1)
w(x, z) = w(x), (2)

where w(x) denote the transverse displacement of a point on the mid plane of the beam and φy(x) the rotation of
the cross section of the beam. According to the theory of elasticity, the strain–displacement relationships is given:

εx(x) =
du(x)

dx
, (3)

γxz(x) = φy(x) +
dw(x)

dx
, (4)

where εx(x) is the normal strain related to the normal stress σx(x) based on the Hooke’s law, and γxz(x) is the
transverse shear strains witch it is equal zero due the Bernoulli-Euler hypothesis.

The total strain energy of the elastically connected double-beam system resting Winkler-Kerr foundation, eq.
(5), is composed by three parts, how can be seen as follows:

Π = πb + πw + πk −W. (5)
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The strain energy of upper and lower beams is obtained using the kinetic relationships given on eq. (3) and
eq. (4), resulting in:

πb =
1

2

∫ L

0

EuIu (w′′u(x))
2
dx+

1

2

∫ L

0

ElIl (w
′′
l (x))

2
dx, (6)

where (′) = d
dx , Eu and Iu are Young’s modulus and the area moment of inertia of upper beam, while El and Il

denote the respective properties of the lower beam, being I =
∫
z2dA . The Potential energy πw induced by the

Winkler elastic layer between the beams can be expressed as:

πw =
1

2

∫ L

0

kw (wu(x)− wl(x))
2
dx. (7)

The elastic potential energy of Kerr elastic foundation πk is denoted by:

πk =
1

2

∫ L

0

Gk (v′(x))
2
dx+

1

2

∫ L

0

kc (wl(x)− v(x))
2
dx+

1

2

∫ L

0

kkv(x)2dx. (8)

The work done due to transverse upper and lower load is:

W =

∫ L

0

gu(x)wu(x)dx+

∫ L

0

gl(x)wl(x)dx. (9)

In order to derive the governing equation, the first variation of total strain energy eq. (5) is done:

δΠ =

∫ L

0

[EuIuw
′′
uδw

′′
u + kw (wu − wl) δwu − guδwu] dx+

+

∫ L

0

[ElIlw
′′
l δw

′′
l − kw (wu − wl) δwl + kc (wl − v) δwl − glδwl] dx+

+

∫ L

0

[Gkv
′δv′ − kc (wl − v) δv + kkvδv] dx = 0. (10)

Thus, the governing equations of an elastically connected Bernoulli-Euler double-beam system resting on
Winkler-Kerr foundation under static loading can be written as follow:

EuIuw
′′′′
u + kw (wu − wl)− gu = 0, (11)

ElIlw
′′′′
l − kw (wu − wl) + kc (wl − v)− gl = 0, (12)

−Gkv′′ − kc (wl − v) + kkv = 0. (13)

2.1 Finite element formulation

The variational statement in eq. (5) requires that the transverse displacement wu and wl, of the upper and
lower beam, respectively, be three times differentiable and C3-continuous, whereas the transverse shear layer
displacement v must be once differentiable and C1-continuous. Thus, the beams displacements are expressed as a
third order polynomial equation similarly to the Finite Element approach of an isolated (without elastic foundation)
Bernoulli-Euler beam, how it can be seen as follows [23]:

wu(x) = a0 + a1x+ a2x
2 + a3x

3, (14)
wl(x) = a0 + a1x+ a2x

2 + a3x
3, (15)

and the shear layer displacement given as a linear polynomial equation [24]:

v(x) = b0 + b1x. (16)

Thus, the interpolation functions for the ten DOF DBSWK element, shown in Fig. 3, are given by:

wu(ξ) = [Nu(ξ)] {u(ξ)} , (17)
wl(ξ) = [Nl(ξ)] {u(ξ)} , (18)
v(ξ) = [Nv(ξ)] {u(ξ)} , (19)
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Figure 3. DBSWK finite element degrees of freedom

where the displacements and slopes at the nodes u(ξ) =
{
wui

vi wli w
′
ui
w′li wuj

vj wlj w
′
uj
w′lj

}T
to which the

index i and j refer the initial and final nodes, respectively, and the shape functions [Nu(ξ)] = [N1 0 0 N2 0 N3 0 0 N4 0]
and [Nl(ξ)] = [0 0 N1 0 N2 0 0 N3 0 N4] are

N1 =
1

4
(ξ − 1)

2
(ξ + 2) , (20)

N2 =
L

8
(ξ − 1)

2
(ξ + 1) , (21)

N3 = −1

4
(ξ + 1)

2
(ξ − 2) , (22)

N4 =
L

8
(ξ + 1)

2
(ξ − 1) , (23)

and [Nv(ξ)] = [0 M1 0 0 0 0 M2 0 0 0] is

M1 =
1

2
(1 + ξ) , (24)

M2 =
1

2
(1− ξ) , (25)

where a nondimensional parameter ξ = 2x/L with −1 ≤ ξ ≤ 1. The distributed loading of the upper and lower
beams can be interpolated by:

gu(ξ) = [Mu(ξ)]

 gui

guj

 , (26)

gl(ξ) = [Ml(ξ)]

 gli

glj

 . (27)

Inserting the interpolation functions, eqs. (17), (18), (19), (26) and (27) into the total strain energy eq. (5),
gives the discretized form as follows:

Π =
1

2

∫ 1

−1
EuIu ([Bu(ξ)] {u(ξ)})2 Jdξ +

1

2

∫ 1

−1
ElIl ([Bl(ξ)] {u(ξ)})2 Jdξ +

+
1

2

∫ 1

−1
kw ([Nu(ξ)] {u(ξ)} − [Nl(ξ)] {u(ξ)})2 Jdξ +

1

2

∫ 1

−1
Gk ([Pv(ξ)] {u(ξ)})2 Jdξ +

+
1

2

∫ 1

−1
kc ([Nl(ξ)] {u(ξ)} − [Nv(ξ)] {u(ξ)})2 Jdξ +

1

2

∫ 1

−1
kk ([Nv(ξ)] {u(ξ)})2 Jdξ +

−
∫ 1

−1
[Mu(ξ)] {gu} [Nu(ξ)] {u(ξ)} Jdξ −

∫ 1

−1
[Ml(ξ)]

{
gl
}

[Nl(ξ)] {u(ξ)} Jdξ, (28)

where [Bu] =
(
d2 [Nu] /dξ2

) (
d2ξ/dx2

)
, [Bl] =

(
d2 [Nl] /dξ

2
) (
d2ξ/dx2

)
and [Pv] = (d [Nv] /dξ) (dξ/dx).

The minimization of the discretized total energy, δΠu = 0, can be written as follows:

δΠu =
1

2

∫ 1

−1
{δu}T [Bu]

T
EuIu [Bu] {u} Jdξ +

1

2

∫ 1

−1
{δu}T [Bl]

T
ElIl [Bl] {u} Jdξ +
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+
1

2

∫ 1

−1
{δu}T

(
[Nu]

T − [Nl]
T
)
kw ([Nu]− [Nl]) {u} Jdξ +

1

2

∫ 1

−1
{δu}T [Pv]

T
Gk [Pv] {u} Jdξ +

+
1

2

∫ 1

−1
{δu}T

(
[Nl]

T − [Nv]
T
)
kc ([Nl]− [Nv]) {u} Jdξ +

1

2

∫ 1

−1
{δu}T [Nv]

T
kk [Nv] {u} Jdξ +

−
∫ 1

−1
{δu}T [Nu]

T
[Mu] {gu} Jdξ −

∫ 1

−1
{δu}T [Nl]

T
[Ml]

{
gl
}
Jdξ = 0. (29)

After evaluating the integrals in eq. (29), the double-beam Winkler-Kerr system can be represented by:

[K] {u} = {p} , (30)

where the stiffness matrix 10x10 is
[K] = [Kb] + [Ks] , (31)

and {p} is the load vector. The nonzero coefficients of stiffness matrix [Kb] are given by:

Kb1,1 = −Kb1,6 = −Kb6,1 = Kb6,6 =
12

L3
EuIu, (32)

Kb1,4 = Kb1,9 = Kb4,1 = −Kb4,6 = −Kb6,4 = −Kb6,9 = Kb9,1 = −Kb9,6 =
6

L2
EuIu, (33)

Kb3,3 = −Kb3,8 = −Kb8,3 = Kb8,8 =
12

L3
ElIl, (34)

Kb3,5 = Kb3,10 = Kb5,3 = −Kb5,8 = −Kb8,5 = −Kb8,10 = Kb10,3 = −Kb10,8 =
6

L2
ElIl, (35)

Kb4,4 = Kb9,9 =
4

L
EuIu, (36)

Kb4,9 = Kb9,4 =
2

L
EuIu, (37)

Kb5,5 = Kb10,10 =
4

L
ElIl, (38)

Kb5,10 = Kb10,5 =
2

L
ElIl. (39)

The stiffness matrix [Ks] coefficients of the foundation are given by:

Ks1,1 = −Ks1,3 = −Ks3,1 = Ks6,6 = −Ks6,8 = −Ks8,6 =
13kwL

35
, (40)

Ks1,4 = −Ks1,5 = −Ks3,4 = Ks4,1 = −Ks4,3 = −Ks5,1 = −Ks6,9 = Ks6,10 =

= Ks8,9 = −Ks9,6 = Ks9,8 = Ks10,6 =
11kwL

2

210
, (41)

Ks1,6 = −Ks1,8 = −Ks3,6 = Ks6,1 = −Ks6,3 = −Ks8,1 =
9kwL

70
, (42)

Ks1,9 = −Ks1,10 = −Ks3,9 = −Ks4,6 = Ks4,8 = Ks5,6 = −Ks6,4 = Ks6,5 = Ks8,4 =

= Ks9,1 = −Ks9,3 = −Ks10,1 = −13kwL
2

420
, (43)

Ks2,2 = Ks7,7 =
L

3
(kc + kk) +

G

L
, (44)

Ks2,3 = Ks3,2 = Ks7,8 = Ks8,7 = −3kcL

20
, (45)

Ks2,5 = Ks5,2 = −Ks7,10 = −Ks10,7 = −kcL
2

30
, (46)

Ks2,7 = Ks7,2 =
L

6
(kc + kk)− G

L
, (47)

Ks2,8 = Ks3,7 = Ks7,3 = Ks8,2 = −7kcL

20
, (48)

Ks2,10 = −Ks5,7 = −Ks7,5 = Ks10,2 =
kcL

2

20
, (49)

Ks3,3 = Ks8,8 =
13L

35
(kc + kw) , (50)
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Ks3,5 = Ks5,3 = −Ks8,10 = −Ks10,8 =
11L2

210
(kc + kw) , (51)

Ks3,8 = Ks8,3 =
9L

70
(kc + kw) , (52)

Ks3,10 = −Ks5,8 = −Ks8,5 = Ks10,3 = −13L2

420
(kc + kw) , (53)

Ks4,4 = −Ks4,5 = −Ks5,4 = Ks9,9 = −Ks9,10 = −Ks10,9 =
kwL

3

105
, (54)

Ks4,9 = −Ks4,10 = −Ks5,9 = Ks9,4 = −Ks9,5 = −Ks10,4 = −kwL
3

140
, (55)

Ks5,5 = Ks10,10 =
L3

105
(kc + kw) , (56)

Ks5,10 = Ks10,5 = − L3

140
(kc + kw) , (57)

and Ks1,2 = Ks1,7 = Ks2,1 = Ks2,4 = Ks2,6 = Ks2,9 = Ks4,2 = Ks4,7 = Ks6,2 = Ks6,7 = Ks7,1 = Ks7,4 =
Ks7,6 = Ks7,9 = Ks9,2 = Ks9,7 = 0.

The load vector {p} can be composed by distributed and concentrated loads applied under upper or/and lower
beams. Therefore, the distributed linear load vector is obtained by the equation:

{pd} =
L

60
[A]



gui

gli

guj

glj


, (58)

where

A1,1 = A3,2 = A6,3 = A8,4 = 9, (59)
A1,3 = A3,4 = A6,1 = A8,2 = 21, (60)
A4,1 = A5,2 = −A9,3 = −A10,4 = 2L, (61)
A4,3 = A5,4 = −A9,1 = −A10,2 = 3L, (62)

and all the remaining terms from matrix [A] are null.

2.2 Numerical examples

In this section examples modelled by the finite elements having ten DOF double-beam on Kerr foundation
are done and compared with the exact solution. Initially it’s done a convergence test considering a simple support
double-beam system in order to analyse the finite element formulation. Finally, different properties, beams ends
conditions and load cases are evaluated.

Example I

Consider that the double-beam system has simply supported ends and the same properties: E = Eu = El =
2 × 109kN/cm2, I = Iu = Il = 6.667 × 10−5m4, and L = 10m. In addition, the springs parameters have
the same values k = kw = kc = kk = 103kN/m2 and the transverse shear layer constant is Gs = 106kN . A
distributed uniform load act across upper beam with intensity gu(x) = −10kN . The displacements and slopes
results are compared with the exact solution obtained by eqs. (11), (12) and (13) expanding the displacements in a
Fourier series, as follows:

wu(x) =

N∑
n=1,3

4gu
πnβ

(
3k2 + 2Gskλ

2
n + 2EIkλ4n +GsEIλ

6
n

)
sin (λnx) , (63)

wl(x) =

N∑
n=1,3

4guk

πnβ

(
2k +Gsλ

2
n

)
sin (λnx) , (64)

v(x) =

N∑
n=1,3

4guk
2

πnβ
sin (λnx) , (65)
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where β = GsE
2I2λ10n + 2E2I2kλ8n + 5EIk2λ4n + 3GsEIkλ

6
n + Gsk

2λ2n + k3 and kn = nπ
L . The slopes can

be obtained deriving eq. (63) and (64) with respect to x coordinate, resulting in:

d

dx
|wu(x)| =

N∑
n=1,3

4gu
πnβ

(
3k2λn + 2Gskλ

3
n + 2EIkλ5n +GsEIλ

7
n

)
cos (λnx) , (66)

d

dx
|wl(x)| =

N∑
n=1,3

4guk

πnβ

(
2kλn +Gsλ

3
n

)
cos (λnx) . (67)

To clarify the steps involved in solving this simple example two at thirty DBSWK finite elements are used to
solve the middle displacements and left ends slopes and this results are compared with the exact solution as shown
in Tables 1 and 2, Fig. 4 shows the convergence of the BDSWK finite element.

Table 1. FEM and exact middle displacements comparative

DOF 2 FE 4 FE 6 FE 8 FE 10 FE 20 FE Exact

wu.
(
103
)

6.3616 6.3460 6.3456 6.3456 6.3456 6.3457 6.3457
wl
(
103
)

1.9319 1.9387 1.9397 1.9400 1.9402 1.9404 1.9404
v
(
105
)

1.0859 1.7264 1.8388 1.8777 1.8956 1.9194 1.9273

Table 2. FEM and exact slope left or right ends comparative

DOF 2 FE 4 FE 6 FE 8 FE 10 FE 20 FE Exact

w′u.
(
103
)

2.0555 2.0502 2.0501 2.0501 2.0501 2.0501 2.0501
w′l.
(
104
)

6.072 6.0952 6.0983 6.0994 6.0999 6.1006 6.1008

Figure 4. Relative error considering different mesh sizes

The results show that the BDSWK finite element formulation presented in this work recover the exact and the
displacements and rotations converge to the analytical solution, faster to the beams and slower to the shear layer.

Example II

Consider the double-beam system having different material properties, springs rigidities and distributed loads
being left ends simply supported and the right ends guide-supported, see Fig. 5. Thus, the upper beam has Young’s
modulus Eu = 13 × 106kN/m2 and a rectangular cross section with dimensions bu = 0.15m, hu = 1m, while
the lower beam has El = 0.5Eu and cross section bl = 0.25m and hl = 1m, and the same length L = 100m.
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Both beams are subject to a uniformly distributed load with intensity gu = −10kN/m and gl = −15kN/m.
The Winkler inner layer has rigidity kw = 6.5 × 102kN/m2, and the Kerr elastic foundation parameters are:
kc = 103kN/m2, kk = 1.5× 103kN/m2, and Gs = 102kN . The exact solution can be calculated by:

Figure 5. DBS with guide-supported right ends

wu(x) =
{
χukc

(
Gsλ

2
n + kk

)
+
[
(χu + χl) kw + χuElIlλ

4
n

] (
Gsλ

2
n + kc + kk

)}
sin(λnx), (68)

wl(x) =
[
(χu + χl) kw + χlEuIuλ

4
n

] (
Gsλ

2
n + kc + kk

)
sin(λnx), (69)

v(x) =
(
(χu + χl) kw + χlEuIuλ

4
n

)
kcsin(λnx), (70)

where λn = nπ
2L , β = α0λ

10 +α1λ
8 +α2λ

6 +α3λ
4 +α4λ

2 +α5, α0 = EuElIuIlGs, α1 = EuElIuIl (kc + kk),
α2 = Gs [EuIukc + kw (EuIu + ElIl)], α3 = EuIukckk + kw (EuIu + ElIl) (kc + kk), α4 = Gskckw, α6 =
kwkckk, χu = 2gu

βλnL
, and χl = 2gl

βλnL
.

The displacements on the beams and shear layer can be seen in Fig. 6 as well as the beams slopes along the
length to twenty finite elements, where the results are compared with the exact solution given in eqs. (68-70) and
your derivatives.

Figure 6. Displacements and slopes along beams and shear layer

Figures shows that the maximum displacements do not occur in the right ends. Table 3 shown the x coordinate
related the maximum displacement and a comparative with the right ends values. Thus, the results shows that the

Table 3. Maximum and right ends displacements

Coord. (m) wu(×103m) Coord.(m) wl(×103m) Coord. (m) v(×103m)

x = 17.00150 6.09994 x = 16.58275 4.42105 x = 16.59425 1.76826
x = 50.00000 5.69652 x = 50.00000 4.16130 x = 50.00000 1.66452

FEM solution have a good performance even if having different beams and springs properties, different loads and
boundary conditions when compared with the exact solution.
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Example III

In this example, different boundary conditions are used and the DBSWK bahavior is valued. Therefore,
consider that the properties are the same that example 2.2 and the same uniformly distributed loads. In addition,
a concentrated downward load pl = 1000kN is applied on the lower beam at x = 10m from the left end. Five
different boundary conditions cases are done: case 1 - CSCCSC; case 2 - CSCFFF; case 3 - SFSSFS; case 4 -
SFCSFF; and case 5 - FSFFSF; where C is clamped, S is simple, and F is free end. The results using twenty finite
elements can be seen in Table 4 and Fig. 7 to 11.

Table 4. Displacements and slopes in the x position (x10−2)

Coord. (m) wu v wl w′u w′l

x = 0 0 0 0 0 0
Case 1 x = L/2 -7.15066 -1.94841 -4.82425 0.40017 0.22045

x = L 0 0 0 0 0

x = 0 0 0 0 0 0
Case 2 x = L/2 -6.92859 -1.89522 -4.68902 0.41585 0.22976

x = L -5.79273 -1.67392 -4.21386 -0.03351 -0.01937

x = 0 0 -1.25377 0 -2.35317 -2.08979
Case 3 x = L/2 -6.93143 -1.90298 -4.69603 0.43493 0.24134

x = L 0 -0.36154 0 0.74466 0.60584

x = 0 0 -0.30407 0 -1.88691 0
Case 4 x = L/2 -6.97912 -1.91736 -4.7361 0.41221 0.23295

x = L 0 -0.81963 -1.65319 0.80892 0.26285

x = 0 -8.41101 0 -3.85277 -1.12164 -1.60279
Case 5 x = L/2 -6.56053 -1.80813 -4.46166 0.42221 0.23326

x = L -5.35991 0 -3.68282 0.00926 0.04334

Figure 7. Displacements and slopes along the beams and shear layer considering the case 1.

One more time, the versatility of the FEM formulation presented in this paper to solve different boundary
cases associated to different mechanical properties and loads could be seen. As expected, the boundary conditions
directly influence the displacements and slopes of the beams and associated with the Kerr layer conduce to the
interesting results once that all of these cases the displacements and rotations are very closed and this fact is
associated with the reactive force produced by Kerr layer. Moreover, the excentric concentrated load applied in
lower beam produce a non-uniform behavior of the system.
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Figure 8. Displacements and slopes along the beams and shear layer considering the case 2.

Figure 9. Displacements and slopes along the beams and shear layer considering the case 3.

Figure 10. Displacements and slopes along the beams and shear layer considering the case 4.

3 Conclusions

In this paper a Finite Element Method formulation to bending analysis of a double-beam system resting on
Kerr foundation is done. Based on the Bernoulli-Euler beam theory, a six-node finite element with ten degrees of
freedom is derived and the both stiffness matrix and load vector are explicitly shown.
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Figure 11. Displacements and slopes along the beams and shear layer considering the case 5.

The model is validated by the exact solution for two cases: in the first one, all ends are simple support and
the convergence is investigated; On the second case, the left ends are simple support and the right ends are a
guide-support. The results show that there are good agreements between the present results and the exact solution.

It is concluded that the formulation given in this paper is very attractive due to its versatility solving any
problems considering different geometrical/mechanical properties, boundary conditions, and loading cases of the
beams and shear layer.
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