

Análise numérica para avaliação de desempenho de Modelo de Bielas e Tirantes via análise linear e não-linear

Philipe Q. Rodrigues¹, João C. Pantoja²

¹Dept. of Technology - FAU, University of Brasilia Campus Universitário Darcy Ribeiro ICC Norte, 70904-970, Federal District, Brazil engcivil.philip@gmail.com, ²Dept. of Technology - FAU, University of Brasilia Campus Universitário Darcy Ribeiro ICC Norte, 70904-970, Federal District, Brazil joaocpantoja@gmail.com

Abstract. O dimensionamento de elementos lineares de concreto frequentemente ocorre admitindo as hipóteses de bernouli das seções planas facilitando o cálculo. Entretanto, existem regiões de descontinuidade geométrica ou estática onde tais hipóteses não podem ser aplicadas visto que surgem deformações não-planares. Cita-se como exemplo vigas-parede, consolos, dentes geber, vigas com abertura na alma e blocos de coroamento sobre estacas. Dentre os recursos disponíveis para dimensionamento destaca-se o método de bielas e tirantes, método dos elementos finitos e método corda-painel. A fim de reduzir o tempo de cálculo, algumas ferramentas computacionais tem sido desenvolvidas empregando o modelo de bielas e tirantes. O CAST (Computer aided-strut-and-tie) auxilia no cálculo e verificação de regiões de descontinuidades do modelo de bielas e tirantes de acordo com códigos normativos definidos pelo usuário. Dispõe de recursos para análise linear, para estudo do comportamento de modelos de bielas e tirantes estaticamente indeterminados e análise não-linear baseado na relação de tensão-deformação definida pelo usuário. Este trabalho se propõe a aplicar o programa no estudo de uma viga-parede pelo MBT comparando seu desempenho via analise linear e não-linear. Desenvolveu-se uma avaliação da região nodal simplificada e refinada como parte da análise numérica. São analisados os resultados através da analises linear e não-linear expondo a convergência de dados e o tratamento da região de descontinuidade pelo CAST.

Keywords: Método de Bielas e Tirantes; Análise não-linear; Concreto Armado.

1 Introdução

1.1 Modelo de bielas e Tirantes

Um dos avanços importantes nas últimas décadas na engenharia estrutural é a extensão do teorema do limite inferior, por exemplo, o modelo de bielas e tirantes no cálculo de descontinuidades geométricas e estáticas como ligações viga-pilar, dentes gueber, vigas-paredes, blocos de coroamento de estacas, sapatas e aberturas. Uma abordagem útil consiste em classificar partes da estrutura em regiões B referente a Bending, Beam ou Bernoulli (Flexão, Viga) e em regiões D de *Discontinuity, Disturberd ou Detailed* (Descontinuidade, Perturbado ou detalhado). Para as regiões B, assume-se a validade das Hipóteses de Bernoulli. Quanto a segunda região – D – diz-se de trechos com complexa variação na tensão e estão presentes em mudanças abruptas de seção/geométrica tal como forças concentradas. A extensão da Região D é dada pelo princípio de Saint Venant's. O modelo de bielas e tirantes é baseado no teorema do limite inferior da análise limite. Em termos gerais, é idealizada uma treliça no interior do elemento estrutural capaz de levar a força aplicada na região D até os apoios ou fronteiras. Refere-se, portanto, a um fluxo de forças ou sistema de carregamento interno da região D. Um modelo compõe-se de bielas, tirantes e nós onde as bielas são os elementos de compressão, os tirantes são

elementos de tração e os nós são regiões de encontro das bielas e tirantes. Embora modelos de bielas e tirantes estaticamente determinados são geralmente adequadas para a maioria das situações, modelos de bielas e tirantes estaticamente indeterminados também são usados para considerar significativas bielas e tirantes contribuindo para o sistema interno de encaminhamento das cargas ou para atual condição de apoio (TJHIN, 2004). O objetivo deste trabalho é avaliar o desempenho do elemento estrutural através do modelo de bielas e tirantes via analise linear e analise não linear. Buscando otimizar a pesquisa, empregou-se a ferramenta computacional CAST.

Cada região D possui suas particularidades seja pela geometria imposta, carregamentos e condições de contorno. Assim para o cálculo da região D, deve-se desenvolver um modelo de bielas e tirantes próprio. Este inicia-se em uma das duas abordagens; método do caminho das cargas ou análises de elementos finitos. O método do caminho das cargas segue alguns passos definidos por Schäfer e Schlaich, 1998:

- 1. Os caminhos de carga devem ser alinhados e não podem cruzar;
- 2. Os centros de gravidade das bielas e as linhas de ação das forças devem coincidir em cada nó;
- 3. Cargas opostas necessitam seguir o menor caminho possível;
- 4. Curvas no caminho de carga denotam concentração de tensão.

1.2 Bielas

SCHLAICH (1988) destaca que a força do concreto nos campos de compressão ou dentro dos nós depende de uma faixa de extensão no estado multiaxial de tensões. Este campo assume configuração segundo distribuição de tensão;

- Biela prismática; tem distribuição paralela sem distúrbios, não gera tensão transversal de tração.
- Biela leque; o campo de tensão é radial e as curvas, desprezíveis. A compressão transversal é favorável especialmente se agir em ambas as direções transversais como por exemplo em regiões confinadas (SCHAFËR, 1988).
- Biela garrafa; a distribuição de tensões é curvilínea com afunilamento da seção. Próximo às forças atuantes há aparecimento de tensões de compressão biaxial e triaxial. As tensões transversais de tração são confirmadas.

SOUZA (2006) expõe que as bielas em formato de garrafa e leque estão presentes em "regiões D" e com formato prismático, característicos de "regiões B". A NBR 6118:2014 no item 22.3.2 dispõe as verificações para as bielas e regiões nodais;

 f_{cd1} : tensão resistente máxima no concreto em regiões sem tensão de tração transversal, havendo tensão de compressão naquela direção (biela leque ou prismática) e nós CCC.

$$f_{cd1} = 0.85 \cdot \alpha_{v2} \cdot f_{cd} \tag{1}$$

 f_{cd2} : tensão resistente máxima no concreto em regiões com tensão de tração, (biela tipo garrafa) e nós CTT e TTT (converge dois ou mais tirantes);

$$f_{cd2} = 0.60 \cdot \alpha_{v2} \cdot f_{cd} \text{ (tirantes)}$$
 (2)

 f_{cd3} : tensão resistente máxima no concreto e nós CCT, convergindo um único tirante;

$$f_{cd3} = 0.72 \cdot \alpha_{v2} \cdot f_{cd}$$
 (3)
 $\alpha_{v2} = (1 - f_{ck}/250), f_{ck} \text{em MPa.}$ (4)

$$\alpha_{v2} = (1 - f_{ck}/250), f_{ck} \text{em MPa.}$$
 (4)

1.3 Nós

Segundo SILVA (1999) nós refere-se a uma parcela de volume de concreto idealizada nos vértices das bielas comprimidas e/ou tirantes e também forças atuantes ou restrições de apoio. Na estrutura real este nó possui um comprimento e largura enquanto no modelo suposto significa um ponto de encontro e de mudanças bruscas na direção das forças. Dependendo do tipo de nó classificam em; CCC – nós em que todos os elementos convergentes são escoras, CCT - nós em que um dos elementos é tirante, CTT - nós em que dois ou mais elementos são tirantes; TTT – nós em que todos os elementos são tirantes.

Em problemas de cálculo de duas dimensões a tensão na zona nodal é biaxial e está limitada ao critério de escoamento pelo estado plano de tensões. A distribuição de tensão em uma região nodal depende do formato

idealizado que está relacionado diretamente à largura efetiva e direção do campo de tensões da tirante ou biela que está entrando o nó (THJIN, 2004).

O CAST dispõe de dois tipos de análises; simplificada e refinada. Na análise simplificada avalia-se o nível de tensão na interface escora/tirante com o nó (SOUZA, 2006). Na análise refinada, para estimar a distribuição de tensão a zona nodal é discretizada em triângulos. Os triângulos são separados por linhas de descontinuidade de tensão e são arranjadas de forma que o estado de tensão em todos os triângulos é constante e o equilíbrio ao longo das linhas de descontinuidade é satisfeito (THJIN, 2007).

1.4 Tirantes

A capacidade efetiva de um tirante é dada por:

$$f_{sd} = A_s f_{yd} \tag{5}$$

Onde A_s é a área de aço necessária e f_y é tensão de escoamento do aço. As armaduras geralmente são assumidas confinadas e uniformemente distribuídas dentro de um prisma de concreto. Logo, o termo área de tirante efetiva da seção transversal como sendo a seção transversal do prisma de concreto em que $A_t = w_t t$ onde w_t é a largura efetiva do tirante.

1.5 Análise não-linear de modelo de bielas e tirantes

Apesar do modelo de bielas e tirantes ser útil na solução de regiões de descontinuidades, existe algumas limitações quanto à previsão da capacidade do modelo e à precisão do cálculo de estruturas de concreto armado na não linearidade. Na análise não-linear de estruturas estaticamente indeterminadas no modelo de bielas e tirantes, a energia absorvida por rótulas plásticas permite uma redistribuição dos esforços e, portanto, a utilização de uma maior capacidade de carga. A implementação da análise não-linear estática no CAST dar-se pela cargadeslocamento baseado na relação tensão-deformação definida pelo usuário e nas espessuras efetivas dos tirantes e bielas. A carga aplicada é dividida por um número igual ou não de passos e é aplicada à estrutura passo a passo de modo crescente. A cada passo de carga a resposta quantitativa das bielas e tirantes bem como da estrutura é avaliada. O aumento de carga pode ocorrer sob controle da carga ou do deslocamento. Para o controle por cargas, a análise termina quando os passos acumulativos atingem a carga especificada de igual modo procede para o controle por deslocamento. A análise prossegue mesmo depois que as deformações atingem a deformação última especificada. O estudo aqui apresentado está embasado nas recomendações da NBR 6118 no item 8.2.10, diagrama tensão-deformação idealizado do concreto à compressão (Figura 1) e digrama tensão-deformação para aços de armadura passiva - item 8.3.6 (Figura 2).

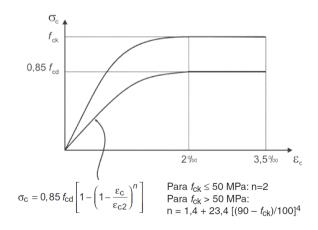


Figura 1. Diagrama tensão-deformação idealizado da NBR 6118

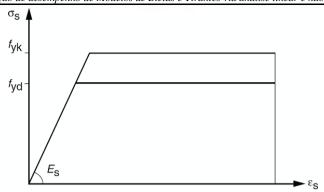


Figura 2. Diagrama Tensão-deformação para aços de armadura passivas

2 Exemplo numérico

2.1 Bielas e tirantes

O elemento estrutural avaliado consiste em uma viga parede biapoiada submetida a uma carga pontual centrada de 2000 kN. O exemplo em estudo (Figura 3) foi retirado do ACI 318-05 (2005) também estudado por PANTOJA (2012). O modelo de bielas e tirantes adotado para estudo foi obtido via otimização topológica. A resistência a compressão característica do concreto é 30 Mpa, resistência a tração do aço das armaduras 500 Mpa e as propriedades geométricas são H =100 cm, B = cm, 1 = 30 cm e a = 15 cm. Nos tirantes horizontais foi imposto 12 Ø 16 mm distribuídos em três camadas distantes 65 mm e largura efetiva mínima de 190 mm. O tirante vertical possui 9 Ø 16 mm distribuído em três camadas distantes entre eixos de 50 mm com largura efetiva mínima de 160 mm.

A hipótese básica assumida nesta análise numérica é tornar o escoamento das armaduras antes do esmagamento da biela comprimida ou ruptura na região nodal. Por conseguinte, estabeleceu-se largura efetiva da biela de 110 mm e 165 mm de modo a impedir a ruptura na região comprimida.

Na análise estática não-linear optou-se pelo controle da carga com incrementos de 100 kN até alcançar a carga última de 2000 kN.

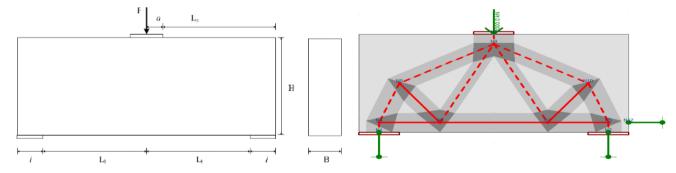


Figura 3. Viga parede simplesmente apoiada com carregamento centrado do ACI 318-05

As cores representam a porcentagem de solicitação do elemento; cores mais quentes denotam valores altos e cores frias indicam baixa solicitação (Figura 4). Os tirantes e as bielas são representados por barras contínuas e tracejadas, respectivamente (Figura 5). O CAST dispõe de determinação automática da espessura por meio de um parâmetro adimensional definido como *stress ratio* que consiste na razão entre a tensão atuante e tensão resistente. Os valores superiores a 1,0 indicam a ruptura e escoras com *stress ratio* próximo de 1,0 indicam projeto ótimo, isto é, menor custo (RODRIGUES E PANTOJA, 2021).

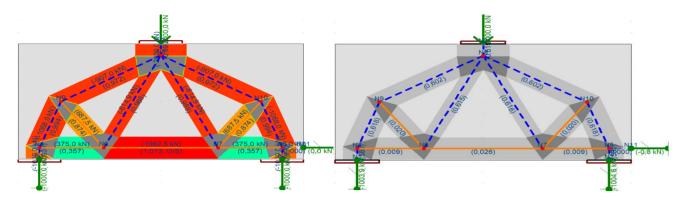


Figura 4. Modelo de bielas e tirantes: a) Análise linear e b) Análise não linear

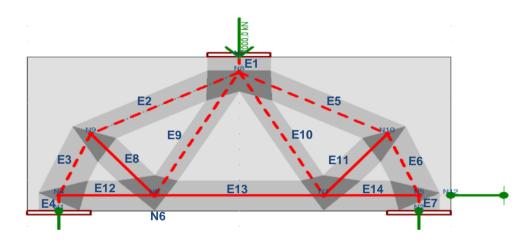


Figura 5. Elementos da treliça idealizada

Foram conduzidas duas análises para a topologia acima sendo que nesta primeira investigação (linear) o tirante E13 rompeu com stress ratio de 1,013 seguido do nó TTT N6 e N7 com stress ratio de 0,988. A escora E9 e E10 também atingiu o stress ratio de 0,988. O elemento menos solicitado foi o tirante horizontal E12 e E14 com stress ratio de 0,357. A Tabela 1 ilustra os valores referentes a primeira analise com tensões, stress ratio e os respectivos elementos.

Tabela 1. Valores das tensões e stress ratio de cada elemento (Biela e Tirante) na análise linear

Elaman 4a	CAmaga (MDa)	Ctuass Datis	Elaman 4a	C4magg (MDa)	Ctuass Datis
Elemento	Stress (MPa)	Stress Ratio	Elemento	Stress (MPa)	Stress Ratio
E1	11,27	0,996	E9	11,18	0,988
E2	10,99	0,972	E10	11,18	0,988
E3	11,24	0,994	E11	379,93	0,874
E4	10,53	0,930	E12	155,42	0,357
E5	10,99	0,972	E13	440,37	1,013 (O/S)
E6	11,24	0,994	E14	155,42	0,357
E7	10,53	0,930	E15	0,00	0,000
E8	379,93	0,874	_	-	_

Na segunda investigação – análise não-linear estática – todos os elementos da treliça mantiveram stress ratio inferior a um. Observou-se ainda que ocorreu uma redistribuição dos esforços proporcionando uma maior capacidade de carga ao modelo o que justifica stress ratio menor que aqueles obtidos pelo primeiro estudo. A Tabela 2 sumariza os novos valores de stress ratio encontrados.

Tabela 2. Valores das tensões e stress ratio de cada elemento (Biela e Tirante) na análise não-linear

Elemento	Stress (MPa)	Stress Ratio	Elemento	Stress (MPa)	Stress Ratio
E1	11,27	0,619	E9	11,18	0,615
E2	10,99	0,602	E10	11,18	0,616
E3	11,24	0,618	E11	379,93	0,020
E4	10,53	0,580	E12	155,42	0,009
E5	10,99	0,602	E13	440,37	0,026
E6	11,24	0,618	E14	155,42	0,009
E7	10,53	0,581	E15	0,00	0,000
E8	379,93	0,020	-	-	-

A Figura 6 facilita a comparação entre as duas investigações com a plotagem dos valores de stress ratio X bielas e tirantes. A abscissa está organizada pela sequência numérica dos elementos não havendo distinção entre bielas e tirantes. Para melhor orientação, delimitou-se o stress ratio '1' com linha vermelha indicando o ponto de ruptura do modelo.

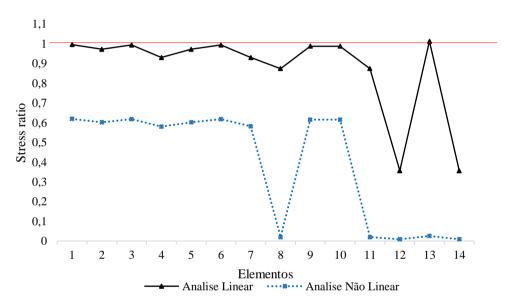


Figura 6. Gráfico comparativo do stress ratio na análise linear e não-linear

2.2 Análise Nodal

Os nós foram verificados pelos dois métodos possíveis; simplificado e refinado. Na primeira verificação, o nó N6 com interface para os elementos E9 e E13 registraram o máximo stress ratio de 0,988. Os elementos E10 e E13 possuem o mesmo nó (N7) com valor de stress ratio = 0,988 (Figura 7).

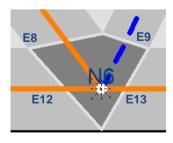


Figura 7. Análise simplificada do nó N6

Na segunda análise subdividiu-se os nós N6 e N7 (TTT) em quatro triângulos apresentando stress ratio superior a '1' – ruptura no nó. A ruptura parcial ocorreu visto que as interfaces para os elementos E8, E9 e E12 ultrapassaram a capacidade última com stress ratio de 1,073, 1,055, 1,191. A Figura 8 indica a triangulação desenvolvida com apenas uma interface menor que um.

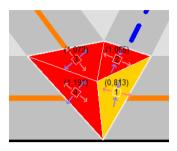


Figura 8. Análise detalhada do nó N6

A Tabela 3 sintetiza a análise detalhada e simplificada em termos de tensão e Stress Ratio solicitante e resistente. O estudo detalhado subdivide em triângulos o que não ocorre na verificação simples, assim, para que a comparação fosse feita, correlacionou-se os lados de cada elemento.

	Tabela 3. Comparação dos	valores de tensões e stress	ratio do nó N6 via a	análise detalhada e simplificada
--	--------------------------	-----------------------------	----------------------	----------------------------------

Análise detalhada						Análi	Análise Simplificada			
Tensão concreto solicitante (Mpa)			Ten	Tensão concreto resistente (Mpa)						
Triângulo	X	Y	Cisalhamento	X	Y	Cisalhamento	Stress	Nó	Stress	Stress
							Ratio	Lado	(MPa)	Ratio
1	-1,96	-7,23	-4,15	-2,41	-8,9	-5,11	0,813	E13	11,18	0,988
2	-2,98	-8,95	-5,97	-2,83	-8,49	-5,66	1.055	E9	11,18	0,988
3	-1,71	0	0,28	-1,59	0	0,27	1.073	E8	8,59	0,760
4	-5,59	0	-0,93	-4,69	0	-0,78	1.191	E12	3,95	0,349

A Figura 9 correlaciona os lados ou triângulos do nó N6 com o stress ratio via verificação simplificada (linha contínua) e detalhada (linha tracejada). No valor de 1 — tensão atuante igual a tensão resistente — traçou-se uma linha vermelha para delimitar o ponto que ocorre a ruptura.

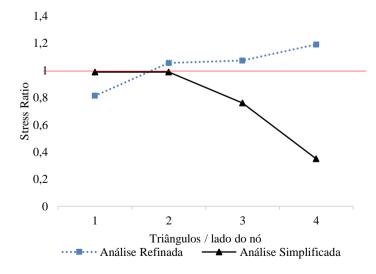


Figura 9. Gráfico comparativo do stress ratio via análise detalhada e análise simplificada

3 Conclusões

O presente artigo faz parte de uma pesquisa em andamento sobre análise linear e não-linear do método de bielas e tirantes e os resultados são parciais. O modelo estudado via análise não-linear demonstrou a redistribuição de esforços devido às rótulas plásticas existentes na estrutura permitindo maior capacidade à estrutura visto que apenas 62% da capacidade máxima foi demandada. Constatou-se ainda que a espessura da zona efetiva de tirante pela distribuição em camadas impacta diretamente na capacidade do tirante durante a analise não-linear. Quanto aos nós, aqueles cuja triangulação se tornou viável, verificações detalhadas e simplificadas divergiram entre si com ruptura localizada em um dos lados do nó antes do escoamento do tirante. As relações tensão-deformação das bielas e tirantes devem ser cuidadosamente conhecidas e definidas corretamente no CAST, caso contrário, os resultados obtidos serão inválidos. Como limitação o pacote computacional não permite a inserção de valores decrescentes na curva após atingir a ruptura.

Declaração de autoria. O autor confirma por meio deste que eles são as únicas pessoas responsáveis pela autoria deste trabalho, e que todo material que tem sido aqui incluído como parte do presente artigo é ainda o proprietário (e autoria) dos autores, ou tem permissão dos proprietários para ser incluído aqui.

Referencias

- [1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6118: Projeto de estruturas de concreto Procedimento. Rio de janeiro: ABNT, 2014.
- [2] PANTOJA, J. C., Geração automática via otimização topológica e avaliação de segurança de modelos de bielas e Tirantes. Tese (Doutorado), Pontifícia Universidade Católica/PUC, Rio de Janeiro, RJ, Brasil, 2012.
- [3] SOUZA, R. A., Aplicação do Método dos Elementos Finitos e do Método das Bielas na Análise de Blocos Rígidos Sobre Estacas. Relatório de estagio (pós-doutoral), University of Illinois at Urbana-Champaign, Paraná, PR, Brasil, 2006
- [4] SCHLAICH, J., SCHÄFER, K., e JENNEWEIN, M., Toward a Consistent design of Structural Concrete. PCI Journal/May-June, 1978.
- [5] SILVA, R. C., Concreto Armado: Aplicações de modelos de bielas e tirantes. Dissertação, Escola de Engenharia de São Carlos/EESC, São Carlos, SP, Brasil, 1991.
- [6] TJHIN, T. N. Analysis and design tools for structural concrete using strut-and-tie models. thesis. (PhD), University of Illinois at Urbana-Champaign, Urbana, 2004.
- [7] TJHIN, T. N., KUCHMA, D. A. Integrated analysis and design tool for the strut-and-tie method. ELSEVIER, Engineering Structures 29, pp. 3042-3052., 2007.
- [8] RODRIGUES, P. Q. PANTOJA, J. C., Modelagem numérica de vigas de equilíbrio via método de bielas e tirantes. XII Congresso Brasileiro de Pontes e Estruturas. Rio de Janeiro, RJ, 2021.