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Abstract
In order to determine relative permeability (Kr) and capillary pressure (Pc) curves, several laboratory tests

are performed, for instance, Core Flooding (CF) experiments using one or two fluids, from which experimental
data such as pressure drop (DP), net produced volume (NP), and Computed Tomography (CT) scans of saturation
profiles (SP) may be derived, and input into a history matching software. History matching is a technique used to
approximate unknown numerical properties of a model based on the knowledge of experimental data. It is usually
performed by solving the inverse problem upon the physical modeling of a system. The SCAS module of the
software RFDAP, developed by ESSS, was used to compare the curves obtained using several combinations of
experimental data inputs: (1) Only DP, (2) Only NP, (3) DP and NP, (4) DP and SP, and (5) DP, NP and SP. The
purpose is to compare the quality of the solutions, in relation to a reference. The synthetic data used for the studies
is based on an CF experiment performed by LRAP (UFRJ).
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1 Introduction

Understanding the behaviour of a rock-fluid system of a reservoir is an important piece of the process of
designing an exploitation strategy that aims to maximize hydrocarbon recovery. This requires a detailed investi-
gation of such system, consisting of measurements of its fluid and rock properties and, specially, the interaction
between them. In this process of understanding rock-fluid behaviour, the determination of relative permeabilities
(Kr) and capillary pressures (Pc) are key for the characterization of the reservoir and thus for the optimization of
the development strategy, since they are one of the main inputs for the reservoir simulators.

Core flooding (CF) laboratory experiments are often used to obtain pressure drop and production curves of a
real rock-fluid system, indirectly telling how is the interaction between the rock surface and its minerals with the
fluids and their compositions (generally brine and hydrocarbon). Such curves are then used as the target for the
history matching software, that will solve the inverse problem using a core flooding simulator that models the flow
through the porous media using Kr and Pc curves.

Such experiments are conducted by sealing and saturating a rock sample with a fluid and trying to reproduce
the reservoir conditions (Ambrus [1]) of temperature and pressure. Unsteady State (USS) experiments are per-
formed by injecting one fluid through a core sample to displace the saturated fluid, either by constant pressure or
flow rate (Ambrus [1]). An additional bump flow can be employed at the end of the test, to minimize laboratory ar-
tifacts (Santos [2]). Lenormand [3] suggests that USS experiments require 7 to 10 steps of injection to be accurate.
The reason for this is that single-injection experiment is based on transient flow dominated by viscous fingering
and channeling. Steady State (SS) experiments may also be employed, by injecting oil and water simultaneously.
From those experiments, Net Production (NP), Pressure Drop (DP), and/or Saturation Profiles (SP) curves through
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CT scan are commonly measured.
A 2-phase porous media simulator based on the Darcy equations is used to reproduce the CF experiment and

retrieve NP, DP, and/or SP curves. An inverse model (also termed ”History Matching”) iteratively searches for
solutions of Kr and Pc that better fit the simulated NP, DP, and SP curves against the experimental data. These
kind of inversion processes are very non-unique or, in the presence of noise in the measurements, there may be no
solution that matches the experimental data exactly. For those cases, the definition of ”solution” may be relaxed to
identify a ”best estimate” (Oliver [4]).

Das [5] investigated the non-uniqueness of the solutions associated with different rock properties such as the
particle or pore size distributions. Their work show how the micro-heterogeneities can affect Kr and Pc curves.
But even for noiseless data and assuming homogeneous rock sample properties, multiple solutions may arise.
Typically, the uniqueness can be improved by considering more and different types of experimental data (Berg
[6]).

In this work, it is performed an investigation of how the selection of different combinations of experimental
NP, DP, and SP curves, for the same rock-fluid system, affects the uniqueness of the solution during the history
matching process. To achieve this, the RFDAP SCAS simulator is used to solve the porous media flow model and
the least squares problem associated with the history matching process, using a gradient-based optimizer.

2 Two phase flow in porous media modeling

Immiscible 2-phase flow in homogeneous porous media is formulated from the conservation of mass, with
Darcy’s velocity (Ambrus [1]), and the LET model (Lomeland [7] [8]) is used for Kr and Pc parametrization.

φρα
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= ρα∇ ·
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)
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With the volumetric restriction of saturations So + Sw = 1. Pressures Pw and Po are related by the capillary
pressure Pc, defined as Pc = Po − Pw. K and φ are the porosity and the absolute permeability, respectively,
which can have spatial variations in the rock sample. ρα and µα are the specific gravity and the viscosity of fluid
α. Finally, Krα are the relative permeabilities.

To solve the equation for the unknowns P and S, the finite volume method (FVM) is used with fully implicit
discretization (Maliska [9], Patankar [10]), which leads to a nonlinear system of equations to be solved. Kr and
Pc curves are assumed to be functions of saturation. The LET model is summarized as follows.
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Where Lα,Eα and Tα are the model parameters in relation to each fluid. Kro@Swi
is the relative permeability

of oil in the irreducible saturation of water and Krw@Sor
is the relative permeability of water in the residual

saturation of oil. The Pc model for secondary imbibition process is given by

Pc = (P sc − P tc )F sc + (P fc − P tc )F fc + P tc (4)
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Where Ls, Es, T s, Lf , Ef and T f are adjustable parameters and P tc is a threshold pressure.
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3 History matching modeling

Estimating the Kr and Pc curves involves the solution of an inverse problem (here denoted ”History Match-
ing”). Since the curves are parametrized, the problem is, therefore, to find a set of values of Φ = [Lα, Eα, Tα, ...]
that minimizes the cost function:

min
Φ

∑
c

∑
t

wct (y
c
t − f ct (Φ))2 c = {NP,DP, SP i} (6)

s.t. φρα
∂Sα
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− ρα∇ ·
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krα
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)
= 0 α = w, o (7)

Parameters for the models in equations (2) and (4) are approximated by solving a least squares minimization
problem (6) from which simulated data f ct (Φ) is compared to the available experimental data yct for each one of the
experimentally obtained curves c = {NP,DP, SP i}. The index i refers to a spatial position where the saturation
profile is being measured. Each index t refers to the temporal index from which the data is being retrieved from. Φ
is a vector composed with the L, E and T parameters being optimized. The function f refers to the data retrieved
from the simulated experiment, and wct are weight factors.

The problem is solved with a Levenberg-Marquardt based method with additional linear restrictions that avoid
spurious Kr or Pc curves. The algorithm stops either by a minimum error tolerance or a number of maximum
iterations passed.

4 Objective function analysis

The objective function is affected by the choice of relative permeability models, and also by the selection or
availability of experimental data. For example, It is common to take in consideration differential pressure (DP)
and net production (NP) curves, but the saturation profiles (SP) data may not be available due to the absence
of necessary laboratory apparatus. Common sense may give the intuition that providing more information about
the system (e.g. by providing more experimental data for the History Matching) should add more restrictions
to the optimization process and, thus, ease the determination of the relative permeability and capillary pressure
curves. However, it is also possible that some of the provided data are redundant, and don’t provide any relevant
information about the system. Thus, it is not clear how the selection of experimental curves of NP , DP and SP
would affect the objective function and the history matching procedure.

In order to analyse the effects of changing the objective function (6) with different experimental data inputs
for the history matching procedure, a synthetic experiment has been produced based on real experimental data
provided by the ”Laboratório de Recuperação Avançada de Petróleo” (LRAP).

The simulation represents an imbibition USS experiment with 5 steps of brine injection. Kr and Pc model
parameters were obtained by running the RFDAP SCAS history matching tool against the NP and DP experimental
data (since experimental SP curves were not available). Then, RFDAP SCAS was used to generate the synthetic
NP, DP, and SP curves with the best fit from the previous solution. Since this synthetic data is obtained numerically,
the obtained parameters for Kr and Pc are certainly the global minimum for the optimization problem, and are
used as a ground truth solution.

The experiment at LRAP used an injection brine with 0.47 cP viscosity and 0.988 g/cm³ to displace a 3 cP
viscosity oil with 0.83 g/cc density. A rock sample of 5.03 cm length and 3.83 cm diameter was used, that has
measured porosity of 14.8% and measured absolute permeability of 321 mD. Total CF experiment time is 23 hours
and 46 minutes, and the change of injection flow rate is summarized in the table below. Kro@swi, Krw@sor, Swi
and Sor are assumed to be known, and were not optimized.
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Time (s) Flow Rate (cc/min)

14781 1

16801 2

19201 4

18002 8

16802 10

The objective function from the history matching problem is a multidimensional function mapping n param-
eters into a scalar value, making it difficult to plot and visually compare the potentially various local minimum
positions that the different combinations of experimental data inputs produced. Thus, two different approaches
have been tackled to investigate how the objective function is affected by different inputs. At first, a set of plots
have been produced around a known solution of Kr, only considering Lα, Eα, and Tα parameters. For each pair
of parameters a contour plot is generated by fixing all the other parameters at the known solution. This results in
a matrix of slices of the objective function around the solution, making it possible to investigate how the objective
function is affected near the global minimum. The slices related to Ew x Eo is shown for different experimental
data inputs in Figure 1. Other slices produced similar behavior, with a large area of small values around the global
minima, which may be a source of convergence struggle for the evolution of gradient based methods. Results show
that the objective function is affected by the addition of different experimental data inputs. Mainly, the addition
of the DP curve alters the shape of the objective function. It is not clear, only considering the landscape plots, if
those changes in the objective function would improve the history matching results in any way.

Figure 1. Landscape plot of Ew x Eo variables around global minimum for the numerical experiment, in logarithm
scale, considering the following experimental data on objective function: (a) Only NP , (b) Only DP , (c) NP and
DP , (d) DP and SP and (e) NP , DP and SP .

However, using the previous approach, it is not possible to observe how the objective function changes far
from the solution. To overcome this issue, a second approach has been evaluated: Given a set of 60 initial guesses
generated using a Latin Hypercube Sampling in a space of suitable solutions, a batch of optimizations is executed
using RFDAP SCAS History Matching module for each configuration. Each initial guess is generated within
a range of +/-25% perturbation for each model parameter, around the known solution space. Both Kr and Pc
LET model parameters are optimized. A shadow of curves is plotted against the ground truth to evaluate the
comparisons, considering: (1) Only DP, (2) Only NP, (3) DP and NP, (4) DP and SP, and (5) DP, NP and SP.
Results for Kr and Pc for cases (4) and (5) are shown in Figure 2, and comparison against experimental data for
all cases is shown in Figure 3.
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(a) (b)

(c) (d)

Figure 2. Kr and Pc solution cloud for each initial guess (in gray), and ground truth solution (dashed colored) for
numerical experiments (4) and (5)

For the synthetic case presented in this work, it can be seen that cases (1) and (2) produces a set of solutions
around NP and DP curves that are more spread out. With the addition of the DP curve, case (3) seems to give
a better match for NP than case (1). Cases (3) and (4) matches the saturation profiles well (quantitatively), but
case (3) did not take into consideration the SP curves. It may be the case that the relation between NP and
SP curves generates redundant data, in the scope of the HM algorithm, at least for the type of rock being used.
Different synthetic cases (e.g. which different rock properties) would be necessary to validate if this is true for any
case. Finally, case (5) gives similar results to case (3), indicating that the addition of the SP curves does not add
extra relevant information for the History Matching, in relation to the NP and DP curves. This also makes sense
from the point of view of the results obtained in the landscape plots. Figure 2 shows the comparison between the
generated Kr and Pc solution cloud for cases (4) and (5).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3. NP ,DP and SP solution cloud for each initial guess (in gray), and synthetically generated experimental
data (dashed colored) for numerical experiments (1) to (5)
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5 Conclusions

The relative permeability is the variable that models the behaviour of multiphase flow in a porous media,
and it is one of the main inputs for reservoir simulators. It dictates the fluid movement within the reservoir and
affects production profiles, impacting directly in the reservoir management strategy. Due to its importance, it is
critical that its determination procedure has a small uncertainty, at least from the numerical point of view. To
understand such variation on the probable answers, a numerical simulation experiment using RFDAP SCAS has
been performed using a synthetically generated data based on a real case experiment provided to ESSS by LRAP
and a comparison between several data inputs in the history matching procedure has been performed. Results seem
to indicate that the use of only NP or only DP is not sufficient to correctly derive Kr and Pc curves from USS
experiments. Also, the addition of SP curves in addition to NP and DP data inputs for History Matching does
not seem to provide better results. Finally, results seems to indicate a relationship between NP and SP curves,
which may be explained, as SP curves are a measurement of fluids inside the sample, and the NP curves are the
measurement of fluids extracted from the sample. This will be investigated further in the ongoing research. For
the experimental standpoint, the measurement of SP curves may be much more difficult than the measurement for
NP and DP. The results obtained in this work indicate that such measurements may not have enough impact on the
history matching results. However, further work must be employed in other types of samples to better validate this
hypothesis.
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