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Abstract. Thomeer-based methods, widely used for permeability estimation of rock samples, rely on the 

determination of pore throat distributions from mercury injection capillary pressure, for both sandstones and 

carbonates. These methods comprise three different approaches for permeability calculation, all of them based on 

concepts related to the Thomeer hyperbola. In this work, for the sake of permeability evaluation, we review and 

adapt the expansion of the tubular bundle model of Purcell to a fractal tubular bundle for permeability calculation. 

Our study is motivated by the assumption that fractal theory can be used to improve upscaling procedures, since it 

provides the ideal mathematical tool to deal with the commonly observed self-similarity properties of complex 

natural media. Furthermore, fractal concepts have been introduced and presented as a well-suited approach for 

flow modeling because of their simple description of highly ramified spaces. Adding up to mercury injection data, 

the box-counting method is applied to the analysis of thin-sections of thirty limestone samples as a way to obtain 

their fractal dimension and hence permeability at the representative elementary volume (REV). It turns out that 

the fractal approach proves to be not only of straightforward application but also to improve estimates of 

permeability carried along the lines of Thomeer methodological principles. 

Keywords: fractal dimension, permeability, tortuosity, Thomeer-Swanson. 

1  Introduction 

The distribution of hydrocarbons during the charging process of the reservoir is primarily controlled by the 

porous system. Through wettability, the porous system controls the interaction between the rock and fluids. 

Through the properties of porosity, permeability, relative permeability and microscopic displacement efficiency, 

it controls oil in place and its recovery, as shown by Clerke et al. [1]. Being able to predict transport properties of 

fluids in the porous space requires a set of statistics embodying relevant physics for statistical description. The 

latter ties geology and reservoir properties with important consequences for oil extraction, as per  Thompson et al. 

[2]. Based on this, Thomeer [3, 4] developed a methodology for rock-typing formations through mercury injection 
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capillary pressure (MICP). Later, Clerke and Martin [5] incorporated the Thomeer hyperbolae [3] representing 

pore systems to computerized spreadsheets to fit the MICP data from the samples. The Thomeer-Swanson 

spreadsheet, thoroughly tested by Buiting and Clerke [6], Clerke et al. [1], Clerke and Martin [5], among others, 

has proven to be satisfactory for permeability prediction using mercury injection capillary pressure from 

sandstones and carbonates. 

The Thomeer-Swanson spreadsheet by Clerke and Martin [4] was developed as a way of rock typing the 

Arab-D formation in Saudi Arabia, which was characterized thoroughly by many authors (Buiting and Clerke, [6]; 

Cantrell and Hagerty [7, 8]; Clerke et al. [1]; Swart et al. [9] and references therein). The spreadsheet allows to 

analyze the extrapolated displacement pressure 𝑃𝑑 of MICP (Figure 1) for unimodal, bimodal and trimodal pore 

size distributions (PSD). The concepts behind the spreadsheet consider that the porosity group within a given PSD 

which contains the largest pore throats is expected to dominate the permeability, while the other groups control oil 

in place and irreducible water saturation.  

The spreadsheet calculations return values of the permeability based either on complete PSDs or on specific 

pore sizes from MICP. MICP data and the corresponding bulk volume, porosity and permeability from basic 

petrophysics must be entered into the spreadsheet. The bulk volume capillary pressure (BV-Pc) graph should be 

continuous and differentiable, thereby forming at least one left-skewed pore throat histogram (LSPTH), as shown 

in Figure 2.  

 

Figure 1. When plotted on log-log axes, the MICP 

capillary pressure 𝑃𝑐 versus bulk volume 𝐵𝑉 curve 

generally resembles a hyperbola. 

Figure 2. Thomeer’s LSPTH, shown in red, derived 

from MICP data (black) of pressure and incremental 

bulk volume converted into pore throat diameters 

Thomeer [3], Clerke and Martin [4] and Thomeer [5]. 

The Thomeer-Swanson spreadsheet is based on the graphs shown in Figure 1 and Figure 2 to calculate 

permeability in four different manners. The first method is based on the Thomeer hyperbola (as seen in Figure 1) 

and correlates the bulk volume BV, 𝑃𝑑 (asymptotic pressure at the limit of small values of BV) and the geometrical 

coefficient of the formed curve to permeability, G. The method derived an equation for the air permeability (in 

millidarcies) from a regression analysis of data from 165 siliciclastic and 114 carbonate samples, leading to the 

monomodal permeability estimation: 

𝑘𝑎𝑖𝑟 = 3.8068{𝐵𝑉 𝑃⁄
𝑑}

2
𝐺−1.3334. (1) 

The second method is the Buiting-Clerke tortuous and relative fractal tubular bundle model (B-C k integral). 

In this approach, Buiting and Clerke [6] expanded the tubular bundle model of Purcell for permeability [7] to a 

fractal tubular bundle. The model assumes that the tubes responsible for breakthrough percolation are those with 

the largest diameter d (radius 𝑟𝑑) with a tortuosity given by 𝐿 𝐿𝑑⁄ , where 𝐿𝑑 is the length of the first percolation 

path (or the shortest flow path associated with the largest tube of radius 𝑟𝑑) and 𝐿 is the outer length of the sample 

[6]. Tortuosity can be considered as a fractal-like property, with fractal dimension 𝐷𝑓 between 1 and 2 [13]. Here, 

the permeability is given as 

𝑘 =
𝜀2

4
𝐷

𝑓

−2(1−𝐷𝑓)𝑄𝑑
(

𝐿

𝐿𝑑

)
2

𝐵𝑣
𝑄(2𝐷𝑓) ,          (2) 
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where 𝐷𝑓 is the fractal dimension defining tortuosity calculated by the box counting method Amozu [8], Antoniazzi 

[9] and Wang et al., [10] from thin-section images acquired by an electrical microscope, 𝜀 = 2[𝜎𝑐𝑜𝑠𝜃]𝐻𝑔−𝐴𝑖𝑟 =

734𝑑𝑦/𝑐𝑚 = 107𝑝𝑠𝑖𝜇𝑚, 𝑃 is the pressure of the injected mercury,  𝑄 = 𝑙𝑛(𝑃) and hence 𝑄𝑑 = 𝑙𝑛 (𝑃𝑑). 

𝐵𝑣
𝑄(2𝐷𝑓) is obtained through the analysis of �̃�𝑣

𝑄(2𝐷𝑓), which is an integral transform of the MICP fractional bulk 

volume (BV) in the Q-domain, as explained by Buiting and Clerke[6]. 

The third method is the Thomeer-based Buiting-Clerke permeability estimation (B-C k fit), where it is 

possible to obtain a permeability value for the single Thomeer fitted hyperbola. Considering Eq. (1) and assuming 

Ld/L = 2 and 𝐷𝑓 = 1.56 (common values for carbonates), the permeability of the unimodal pore system is given 

by Buiting and Clerke [6]: 

𝑘𝐵𝐶 ≈ 506
𝐵𝑉∞

𝑃𝑑
2 𝑒−4.43√𝐺 .          (3) 

Although the Thomeer-based methods have been widely used with a pre-fixed value of fractal dimension 

representing tortuosity of 1.56, there is not much evidence that calculating the fractal dimension for each sample 

improves the results. Thereunto, we review the box-counting methodology to calculate the fractal dimension from 

thin-section images of each sample using the second method (B-C k integral). 

2  Methodology 

2.1 Fractals 

As noted by Hunt et al. [11], porous media have been modeled in many different ways: as random or regular 

sphere packs, as bundles of capillary tubes, as pore networks, and with fractal concepts. The fractal dimension 

represents the degree of occupation of the fractal geometry in space, indicating the irregularities of the geometrical 

figure. 

For decades it was believed that the heterogeneities of porous media were random and uncorrelated, and 

would change significantly over length scales much smaller than the media’s linear extent. Evidence accumulated 

over the years suggest, however, that natural porous media may exhibit correlations in the spatial distribution of 

their properties at multiple length scales. This finding can be analyzed using fractal distributions to describe how 

the properties of a porous medium depend on the observation scale, how the properties are correlated and how to 

correctly model the correlations as noted by Hunt and Sahimi [12]. Because of the self-similarity of fractals, it is 

possible to use fractal dimensions to aid in upscaling. 

2.2 Box-Counting 

Box-Counting methods involve dividing a given two-dimensional image into squares, and accounting for the 

squares that comprise parts of the image, as proposed by Amozu [8]. An iterative process progressively diminishes 

the size of the squares and sums up the parts comprising the images of interest. Through the number of squares 

and their lengths, it is possible to calculate the fractal dimension 𝐷𝑓 of the image being analyzed, according to 

Antoniazzi [9]: 

𝐷𝑓 = −
𝑙𝑜𝑔 (

𝑁𝑖+1

𝑁𝑖
)

𝑙𝑜𝑔 (
1 𝐿𝑖+1⁄

1 𝐿𝑖⁄
)

,          (4) 

where 𝑁𝑖 is the number of squares containing the object of interest (i.e., the pore) and 𝐿𝑖 the integer number of 

divisions made on the initial side of the square, such that the maximum value for 𝑁 is 𝑁𝑚𝑎𝑥 , 𝑁𝑚𝑎𝑥  being the total 

number of squares in each iteration: 

𝑁𝑚𝑎𝑥 = 𝐿2.          (5) 

In attempts to calculate the fractal dimension, a computational box-counting code was built in C++ to obtain 

the fractal dimension from thin section images (2D) obtained with a microscope. In a first iteration, the thin section 

is not divided but remains as it is. The second iteration is done by dividing the sides of the initial square into two 
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segments (𝐿 = 2). Images for the first, second and third iterations for a 2-D case are shown in  

Figure 3.  

 

 

 

Figure 3. Schematics showing the process of dividing images, starting from the first iteration, and proceeding to 

the second and third iterations. 

The code reads the images and differentiates pores from solid material and the background through color 

differentiation. Hence, 𝑁 keeps track when a square or box intercepts a pore, as shown in Figure 4. In this figure, 

pores are represented in black, therefore the squares accounted for N are shown on the right in solid lines in black, 

while the shaded grey define squares that are not accounted for N. Iterations are done until the square reaches a 

predetermined side length, in pixels, according to the image resolution. 

 

Figure 4. A representative zoom showing a division in squares after the 𝑛𝑡ℎ iteration (here, n=3). 

For images with different side lengths, such as a rectangle of 10 x 20 units, the first square in the first iteration 

can be extrapolated such that the short side becomes as large as the largest one (e.g., a 20 x 20 units square 

extrapolated from a 10 x 20 unit rectangle) without affecting 𝑁 and L.  

Another problem the box-counting code can deal with is related to odd image lengths, such as an 11 x 11 

units image (e.g., centimeters) square, as shown in Figure 5. The first iteration then faces no problem since no 

division is made. But from the second iteration on it is necessary to add units of squares.  Assume having a side of 

11 units, then the second iteration would account for 2 segments of 5.5 units, a non-integer. If 5-unit segments are 

chosen, a 1-unit segment is left behind the calculation (shaded in grey), which requires another 5-unit segment to 

be added. In this case, the number of squares goes from 4 squares with 5.5 units each, to 9 squares with 5 units 

each. L is then hence the rounded-up division of the integer part of the first trial segment (i.e., L = round-up of 

11/5 = 3). 

 

Figure 5. Box counting iterations for divisions that do not return an integer length: (A) the first iteration (in red); 

(B) second iteration returning a non-integer length; (C)Adoption of the closest smallest integer for the segment; 
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(D) newly added squares of the same length as in step C.  

Finally, it is possible to calculate the fractal dimension of the pore system via box counting. By using linear 

regression, the fractal dimension is obtained by plotting log (N) versus 𝑙𝑜𝑔 (1 𝐿⁄ ) of all iterations on a cartesian 

plot. The absolute value of the slope of the fitted line is the fractal dimension. The fractal dimension obtained from 

thin-sections, which reflects the tortuosity, is used to calculate the REV permeability. 

2.3 Thin sections 

Quantitative data regarding porosity and the pore size distribution can be obtained from direct or indirect 

petrophysical investigations. Direct investigations are commonly performed using gas or mercury injections, while 

the indirect studies are performed using thin sections. Thin section petrographical analyses require careful 

examination, and are usually bi-dimensionally limited. 

High-resolution thin section images are obtained from petrographic microscopes that scan thin polished 

sections or cover slips of rocks. Blue color epoxy dye is typically used to expose pores, thus distinguishing them 

from the crystal structure of the rock as pointed by Buono et al. [14]. Basic petrophysical porosity and permeability 

data also provide a reference for thin sections, which sometimes produce lower micro- and macro-porosities 

because of the relatively small area covered by the images as discussed by Carneiro et al. [15]. 

After scanning a rock, the acquired image is segmented to account for pore and porosity using the red-green-

blue (RGB) spectrum. A binary image is then generated, where pores are represented in black, and solids in white. 

For this, the ImageJ software, developed by Schneider et al. [16], was used. This process is shown in Figure 6. 

Posteriorly to generating a binary image, pixels are counted and the porosity and pore size distribution are 

computed. The fractal dimension is also calculated based on the box-counting method. 

 

 

Figure 6. Illustration of ImageJ processing: (A) Limestone blue-stained thin section, showing pores in blue; (B) 

segmentation, showing pores in red; (C) binary image, showing pores in black (Courtesy of World Wide Rock 

Catalog, by CoreLab). 

2.4 MICP 

Mercury capillary pressure analyses can be used to determine pore geometry and to predict the behavior of 

immiscible fluid pairs in the porous medium as described by Churcher et al. [17]. The Washburn equation, given 

by Eq. (6), provides a simple relationship to convert mercury pressure into a pore size and is a special case of the 

Young-Laplace equation, as explained by Gregg and Sing [18]: 

𝑃𝑐 = (𝜌𝑤 − 𝜌𝑛𝑤)𝑔𝑎ℎ =
2𝜎𝑐𝑜𝑠𝜃𝑐

𝑟𝑐𝑎𝑝

,          (6) 

where 𝑃𝑐 is the capillary pressure (e.g., in kPa), 𝜎 is the surface tension between air and mercury (480 mN/m), 𝜃 

is the contact angle (equal to 140𝑜 for air-mercury) and 𝑟𝑐𝑎𝑝 is the pore throat radius (𝜇𝑚).  𝑔𝑎 is the acceleration 

due to gravity, ℎ is the height above the free surface, 𝜎 is interfacial tension and 𝑟𝑐𝑎𝑝 is the capillary tube radius. 

3  Results and discussion 

The results presented in this work cover the analyses performed on 30 limestone samples retrieved from a 

quarry in North-East Brazil (one sample) and 29 oil wells worldwide, similar to those found in the Pre-salt 
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reservoirs. Results from the routine basic petrophysical measurements are used as the standard porosity and 

permeability values. The objective was to calculate the representative elementary volume (REV) permeability of 

the studied carbonate samples, the majority of which showed bimodal pore size distributions, using the Thomeer-

Swanson spreadsheet. The individual values of fractal dimension 𝐷𝑓 were calculated for each sample using the 

box-counting method for each thin-section and resulting permeability values were compared to the standard 

calculations of the spreadsheet (fixed 𝐷𝑓). 

First, MICP pore throat size distribution was obtained for all samples and entered in the Thomeer-Swanson 

spreadsheet. Initially, the methods were used for calculating permeability without modifications in the calculations.  

Subsequently, Method 2 (B-C k integral) had its standard 𝐷𝑓  value modified for each sample to the 𝐷𝑓 found from 

the thin-section analysis. The tortuosity definition of 𝐿/𝐿𝑑 was kept equal to 0.5 in all calculations. 

The accuracy of measured versus fitted or calculated data are reflected by several statistical measures, such 

as R-squared (𝑅2), and the root mean square error (RMSE). Several measurements involved logarithmic scale data 

for which the root mean square log-transformed error (RMSLE) are calculated. The RMSLE parameter comparing 

the accuracy of the calculated permeability calculated (𝑘𝑐𝑎𝑙) versus the measured permeability from basic 

petrophysics (𝑘𝑚𝑒𝑎𝑠) is given by Eq. 7, where  𝑁𝑠 represents the amount of data: 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑁𝑠

∑[𝑙𝑜𝑔𝑘𝑐𝑎𝑙 − 𝑙𝑜𝑔𝑘𝑚𝑒𝑎𝑠]2

𝑁𝑠

𝑖=1

 .          (7) 

Figure 7 compares the measured permeability to the permeability estimations from the Thomeer-based 

models, where dashed lines indicate a variation equal to ± 20% of the permeability. Comparison of the RMSLE 

values summarized in Table 1 indicate that the Buiting-Clerke tortuous and relative fractal tubular bundle model 

(B-C k integral) with fractal dimension calculated individually for each sample (Eq. 2) is the most accurate method, 

while the remaining presented methods are the least accurate ones amongst those studied here. The least accurate 

method for the studied samples is the monomodal Thomeer hyperbola method (Eq. 1). 

 

Figure 7. RMSLE values for (A) Thomeer-based Buiting-Clerke permeability estimation (B-C k fit); the Buiting-

Clerke tortuous and relative fractal tubular bundle model (B-C k integral) with fractal dimension calculated 

individually for each sample (in B) and with the suggested global value of 1.56 for the fractal dimension (in C); 

and (D) the monomodal Thomeer hyperbola method. 

Table 1. RMSLE values for the Thomeer-based methods. 

Method Monomodal 

(Method 1) 

B-C Integral 

(Method 2) 

B-C Integral fixed 

Df (Method 2) 

B-C Fitted (Method 

3) 

RMSLE 0.86 0.65 0.79 0.67 



T. Lipovetsky, E. G. Ribeiro, A. Boyd, L. Moriconi, P. Couto 

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

4  Conclusions 

The Thomer-Swanson spreadsheet was partially implemented with the intention of showing that calculating 

the fractal dimension, a property of the tortuosity present in porous media, can be beneficial for permeability 

estimations using the Thomeer-based approaches. Comparison of the calculated permeability to the measured 

permeability indicates that Buiting-Clerke tortuous and relative fractal tubular bundle model (B-C k integral, 

Method 2) with fractal dimension calculated individually for each sample using the box-counting technique 

applied to thin-sections estimates permeability more accurately than the other approaches presented. 
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