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Abstract. A frequency-domain method for estimating the mass, stiffness and damping matrices of the mass-
spring-damper system is presented. The developed method is based on the extraction of real and imaginary parts
of the Complex Frequency Response Matrix (Complex Transfer Matrix) and the Undamped Frequency Response
Matrix (Normal Matrix or Real Frequency Response Matrix). A relationship among these matrices is used to
obtain the Damping Matrix explicitly. The Mass and the Stiffness Matrices are calculated from the Undamped
Frequency Response Matrix using the Least Squares Method. Three examples were employed in order to illustrate
the applicability of the proposed method and the results were quite accurate.
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1 Introduction

A multi-degree-of-freedom (MDOF) structural system can be simulated in terms of mass, stiffness and damp-
ing matrices. The dynamic equilibrium equation in the time-domain, Clough and Penzien [1], Craig [2] and Rao
[3], with N degrees of freedom is

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = {f(t)} . (1)

with the initial conditions

{x(0)} = {x0} , {ẋ(0)} = {ẋ0} . (2)

In eq. (1) , [M ](NxN), [C](NxN) and [K](NxN) are the mass, damping and stiffness matrices, {ẍ(t)} (Nx1),
{ẋ(t)} (Nx1) and {x(t)} (Nx1) are the accelerations, velocities and displacements vectors while{f(t)} (Nx1)
is the external forces vector. In eq. (2), {x0} (Nx1) and {ẋ0} (Nx1) are the initials displacements and velocities
vectors, respectively.

The mass matrix is assumed diagonal and the damping is considered as viscous. The elements of the matrices
must be properly allocated in each matrix, according to the structural system disposition. If there are not the
external forces {f(t)}, the the movement is natural and considered as free vibration. Then, eq. (1) becomes

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = 0. (3)
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For a single-degree-of-freedom system (SDOF), the undamped natural frequency ωn, the viscous damping
factor ζ and the damped natural frequency ωd are, respectively

ωn =
√
k/m. (4)

ζ =
c

ccr
where ccr = 2mωn =

2k

ωn
= 2
√
km. (5)

ωd = ωn

√
1− ζ2. (6)

For the SDOF underdamped system (ζ < 1), the analytical response of eq. (3) is

x(t) = exp (−ζωnt)

[
x0 cos(ωdt) +

(
u̇0 + ζωnu0

ωd

)
sin(ωdt)

]
. (7)

For an undamped MDOF system, the governing equation of the free vibration is

[M ] {ẍ(t)}+ [K] {x(t)} = 0. (8)

2 Frequency Domain Approach

Applying the Fourier Transform into eq. (1), it is converted from time-domain to frequency-domain, Clough
and Penzien [1], Craig [2] and Rao [3], and it becomes

(−ω2[M ] + iω[C] + [K]) {X(ω)} = {F (ω)} . (9)

where ω is the independent variable in the frequency-domain, {X(ω)} the Fourier Transform of {x(t)} and
{F (ω)} the Fourier Transform of {f(t)}.

Explaining {X(ω)} in eq. (9), it is obtained

{X(ω)} = (−ω2[M ] + iω[C] + [K])−1 {F (ω)} . (10)

The expression (−ω2[M ] + iω[C] + [K]−1) from eq. (10) is called Complex Frequency Response Matrix
[H(ω)], Transfer Matrix or Complex Frequency Response Function (CFRF) and has many applications in the
frequency-domain.

[H(ω)] = (−ω2[M ] + iω[C] + [K])−1 or [H(ω)]−1 = (−ω2[M ] + iω[C] + [K]). (11)

The Complex Frequency Response Matrix [H] and the Undamped Frequency Matrix [HN ] Matrices can be
obtained by Modal Testing. The structure under analysis must be excited by a known kind of force, and the exci-
tation force and resulting response vibrations, typically accelerations, are both measured properly by instruments
and, after a software data processing, the Complex Frequency Response Function (CFRF) data can be obtained.
There are two common methods of excitation: impact hammer and modal shaker, Allemang et. al. [4].

For a system with one degree-of-freedom, with m = 3kg , ζ = 0.05 and k = 2700N/m , the graphics of
real and imaginary parts of H versus frequency, magnitude of H versus frequency and HN versus frequency are
shown in Fig. 1, Fig. 2 and Fig. 3, respectively.
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Figure 1. Real and Imaginary parts of H versus frequency

Figure 2. Magnitude of H versus frequency

3 Estimation of the Damping Matrix

For an undamped system, the matrix [H]−1 from eq. (11) becomes

[HN (ω)]−1 = (−ω2[M ] + [K]). (12)

Subtracting eq. (12) from eq. (11), it results

[H]−1 − [HN ]−1 = iω[C]. (13)

Post-multiplying eq. (13) by [H], it turns

[I]− [HN ]−1[H] = iω[C][H]. (14)
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Figure 3. HN versus frequency

Pre-multiplying eq. (14) by [HN ], it turns

[HN ]− [H] = iω[HN ][C][H]. (15)

Moving [H] from the left side of eq. (15) to the right side, it becomes

[HN ] = [H] + iω[HN ][C][H]. (16)

Considering that [H] = [HR] + i[HI ] where [HR] and [HI ] are the real and imaginary parts of [H], respec-
tively, and substituting into eq. (16), it turns

[HN ] = [HR] + i[HI ] + iω[HN ][C] {[HR] + i[HI ]} . (17)

Rearranging eq. (17) it becomes

[HN ] = {[HR]− ω[HN ][C][HI ]}+ i {[HI ] + ω[HN ][C][HR]} . (18)

The matrix [HN ] must be real. Then, the imaginary part of the right side of eq. (18) must be equal to [0].

[HI ] + ω[HN ][C][HR] = [0] or [HN ][C][HR] = −
1

ω
[HI ]. (19)

Pre and post-multiplying eq. (19) by [HN ]−1 and [HR]
−1, respectively, it becomes

[C] = − 1

ω
[HN ]−1[HI ][HR]

−1. (20)

In eq. (20) is shown the estimation of the damping matrix [C] in terms of the undamped matrix [HN ] and the
real [HR] and imaginary [HI ] parts of the transfer matrix [H].
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4 Estimation of the Mass and Stiffness Matrices

Considering only the real parts of eq. (18) it becomes

[HN ] = [HR]− ω[HN ][C][HI ]. (21)

Substituting eq. (20) into eq. (21), it turns

[HN ] = [HR] + [HN ][HN ]−1[HI ][HR]
−1[HI ]. (22)

Then [HN ] can also been calculated from the real and imaginary parts of [H], or

[HN ] = [HR] + [HI ][HR]
−1[HI ]. (23)

Taking eq. (12) and considering the uncoupling among the matrices [HN ]−1, [M ], and [K], each element of
these matrices are related according to the following

[HN (ω)(i, j)]−1 = (−ω2[M(i, j)] + [K(i, j]). (24)

5 Examples of Application

Three examples of application are shown in order to illustrate the Methodology, which are in Ferro [5].
The first one is a one-degree-of-freedom system, the second one is a two-degrees-of-freedom and the third a seven-
degrees-of-freedom. A fitting method can be adopted to solve the nonlinear eq. (24). The Least Square Method was
used in this work in order to fit the data, where the input data are each set of elements H−1

N (i, j) and four aleatory
frequencies. The fitting results are the corresponding elements M(i, j) and K(i, j). At least four frequencies must
be used for a good accuracy, because of the relation between the matrices [HN ]−1 and frequencies is of power 2

5.1 Example 1 - SDOF System

In this example, the system has m = 3 kg , ζ = 0.05 and k = 2700N/m. Then, the expected values of m
and k are 3 and 2700 , respectively, and for c, the value is

c = 2× ζ ×
√
k ×m = 2× 0.05×

√
2700× 3 = 9N.s/m. (25)

For calculating the damping coefficient eq. (20) was used and for the mass and stiffness estimation the fitting
equation is

H−1 = −ω2m+ iωc+ k. (26)

The command numpy.polyfit of Python language was used to fit eq. (26) with 4 random frequency values,
which are ω1 = 1.6000 rad/s , ω2 = 1.7212 rad/s , ω3 = 1.8423 rad/s and ω4 = 1.9635 rad/s.

The fitting results are m = 3.0000 c = 9.0000 and k = 2700.0000, which indicate an excellent
estimation.
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Figure 4. System of example 2

5.2 Example 2 - 2 DOF System

In this example, from Craig [2], page 357, and shown in Figure 4, where m1 = m2 = 1 kg, c1 =
0.6284N.s/m, c2 = 0.0628N.s/m, k1 = 987N/m and k2 = 217N/m, the Mass [M ], Damping [C] and
Stiffness [K] matrices are

[M ] =

1 0

0 1

 [C] =

 0.6912 −0.0628

−0.0628 0.6912

 [K] =

1204 −217

−217 1204



The damping matrix [C] was calculated according to eq. (20) with ω = 3.1416 rad/s and the command
numpy.polyfit in Python language was used for each element of H−1

N (ω) and four aleatory frequencies which are
ω1 = 1.00000 rad/s , ω2 = 1.7139 rad/s , ω3 = 2.42773 rad/s , ω4 = 3.1416 rad/s, for estimating the matrices
[M ] and [K]. The results are shown in Table 1.

Table 1. Results for Mass, Damping and Stiffness Matrices of Example 2

(i, j) M(i, j) C(i, j) K(i, j)

(1,1) 1.0000 0.6912 1204.0000
(1,2) 5.1908 e-14 -0.0628 -217.0000
(2,1) 5.1908 e-14 -0.0628 -217.0000
(2,2) 1.0000 0.6912 1204.0000

5.3 Example 3 - 7 DOF System

In this example, from Chen [6],and shown in Fig. 5, the parameters are m1 = m2 = m3 = m4 = m5 =
m6 = m7 = 1, 0 kg, k1 = 10000N/m, k2 = 20000N/m and c = 20N.s/m. The mass [M ], damping [C] and
stiffness [K] matrices of the system are
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Figure 5. System of example 3

[M ] =



1. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 1.


[C] =



0. 0. 0. 0. 0. 0. 0.

0. 20. 0. 0. 0. 0. 0.

0. 0. 20. 0. 0. 0. −20.

0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 20. 0. 0.

0. 0. 0. 0. 0. 20. −20.

0. 0. −20. 0. 0. −20. 40.



[K] =



4. 0. −2. 0. 0. 0. −1.

0. 3. −1. 0. 0. 0. 0.

−2. −1. 5. 0. 0. 0. −1.

0. 0. 0. 6. −2. −1. −2.

0. 0. 0. −2. 4. 0. 0.

0. 0. 0. −1. 0. 3. −2.

−1. 0. −1. −2. 0. −2. 6.


× 104

Again, the damping matrix was calculated according to eq. (20) with ω = 3.1416 rad/s and the command
numpy.polyfit in Python language was used in each element of [HN ]−1 , [M ] and [K].The results are shown in
Table 2

Comparing the results on tables 1 and 2 with the matrices [M ] , [C] and [K] of examples 2 and 3, respectively,
it can be concluded that they are quite good.
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Table 2. Results for Mass, Damping and Stiffness Matrices of Example 3

(i, j) M(i, j) C(i, j) K(i, j)

(1,1) 1.0000 -1.3553 e-16 4.000 e+04
(1,3) -6.2040e-12 -2.5404 e-16 -2.0000 e+04
(1,7) -3.1020 e-12 6.0987 e-16 -1.0000 e+04
(2,2) 1.0000 20.0000 3.0000 e+04
(2,3) -3.1020 e-12 -2.7756 e-16 -1.000 e+04
(3,3) 1.0000 20.0000 5.0000 e+04
(3,7) -3.1020 e-12 -20.0000 -1.000 e+04
(4,4) 1.0000 8.1294 e-15 6.0000 e+04
(4,5) -6.2040 e-12 -1.0850 e-15 -2.0000 e+04
(4,6) -3.1020 e-12 -1.0853 e-15 -1.0000 e+04
(4,7) -6.2040 e-12 1.3448 e-16 -2.000 e+04
(5,5) 1.0000 20.0000 4.0000 e+04
(6,6) 1.0000 20.0000 3.0000 e+04
(6,7) -6.2040 e-12 -20.0000 -2.0000 e+04
(7,7) 1.0000 40.0000 6.0000 e+04

6 Conclusions

A formulation based on the Complex Frequency Response Matrix and the Undamped Response Matrix
was used in order to estimate the Mass, Damping and Stiffness Matrices of spring-mass-damper systems in the
frequency-domain. The Damping Matrix can be calculated explicitly and the Mass and Stiffness matrices are esti-
mated by the Least Square Method. It was shown that the equations for the fitting problem are uncoupled and the
Mass and Stiffness elements of the corresponding column and row can be calculated separately . Three examples
were used for illustrate the methodology and the results were quite good in all of them. This approach can be
adopted for different kinds of damping and continuous structural systems, waves propagation, for example, see
Mansur [7] .
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