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Abstract. A new inverse modeling is presented for reconstructing an SH wave input motion (i.e., its corresponding
effective seismic force vector) in a 2D domain that is truncated by a wave-absorbing boundary condition (WABC).
The domain reduction method (DRM) is utilized to model seismic input motions coming from the outside domain
of the WABC. The partial differential equation (PDE)-constrained optimization method aims at reconstructing
a targeted effective seismic force vector, corresponding to targeted incident wavefields, at the DRM boundary.
The presented method includes the discretize-then-optimize (DTO) approach, the finite element method (FEM),
which is used for solving state and adjoint problems, and the conjugate-gradient scheme, determining the desired
search path throughout a minimization process. The numerical results show that an effective force vector at a
DRM boundary is accurately reconstructed when a regularization, aimed at suppressing wave energy in an exterior
domain outside a DRM boundary, is utilized in conjunction with a typical misfit functional. By using such a regu-
larization term, the presented algorithm can minimize the kinetic energy associated with scattered wave responses
outside the DRM boundary and, eventually, improve the inversion performance. It is also shown that our inverse
modeling can accurately reconstruct the wave responses within a domain inside the DRM boundary.

Keywords: Domain reduction method, PDE-constrained optimization, Adjoint method, Seismic-input motion
inversion, Wave-suppressing regularization.

1 Introduction

There is a need to estimate complex seismic input motions in a near-surface domain, without considering
a seismic source at a hypocenter, from limited (i.e., sparse in space) seismic measurement data. Based on such
estimated seismic inputs, engineers can appropriately investigate the effect of an earthquake on built environments,
including subsurface systems (soil, foundations, and underground structures). To date, there have been two dom-
inant, conventional methods for the identification of incident seismic waves that hit a near-surface domain: one
is deconvolution in a one-dimensional (1D) setting [1–3] and the other is the inversion of a seismic source profile
at a fault in a very large (e.g., hundreds of kilometers long) regional-scale domain [4]. This work presents an
alternative to these traditional methods, a new PDE-constrained numerical inversion solver, which is able to iden-
tify arbitrary, incoherent incoming seismic waves and reconstruct corresponding wave responses in a truncated
multi-dimensional domain by using sparsely measured ground motion.

The inverse problems related with elastodynamic wave motions have improved thanks to PDE-constrained
optimization, and the kinds of the associated applications have been extented from material evaluation to dynamic-
input identification or optimization. For instance, the PDE-constrained optimization method has been used in the
geotechnical site material characterization. [5–9]. To investigate the feasibility to identify arbitrary, incoherent
incoming seismic waves in a truncated domain by using the PDE-constrained optimization framework, Jeong and
Seylabi [10] and Guidio and Jeong [11] studied a full-waveform source-inversion method to identify an incoming
seismic wave in a 1D semi-infinite solid and a 2D bounded domain, respectively. Guidio et al. [12] presented a
numerical method that can reconstruct both spatial and temporal distributions of complex, incoherent seismic inci-
dent wavefields, modeled as traction on WABC, propagating into a 2D truncated domain of anti-plane shear wave
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motion without using any regularization. Guidio and Jeong [13] also discussed a new method for reconstructing
an effective force vector at a domain reduction method (DRM) layer and estimating the shear wave motions in an
interior domain surrounded by DRM layer. They showed that their numerical method can properly reconstruct the
ground motions in the interior domain, but the effective force is not well estimated because their optimizer was not
informed of any requirement on the amplitude of the waves resulted from an estimated force vector in an exterior
domain.

Continuing the works mentioned before, the presented study considers the DRM and adds a regularization
term in the objective functional in order to minimize the wave field in the exterior domain while improve the
reconstruction of the targeted effective force vector and its corresponding ground motions.

2 Problem definition

The presented method is aimed at (i) identifying an effective seismic force on DRM layer as an incident
seismic motion that allows its corresponding wave responses to match the measured motions at sensor locations on
the ground surface and (ii) consequently reconstructing wave responses in an interior domain surrounded by the
DRM layer. In particular, we impose regularization such that the wave responses in an exterior domain outside the
DRM layer due to the estimated force vector are minimized. This work considers a two-dimensional heterogeneous
domain of anti-plane shear wave motions as shown in Fig. 1.
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Figure 1. Problem configuration: a DRM-ABC-truncated domain used for an inversion solver.

2.1 Governing wave physics

The strong form of the governing differential equation for the shear wave propagation in the domain Ω is:

∇ · (G∇u)− ρ∂
2u

∂t2
= 0, (1)

where u = u(x, y, t) denotes the displacement field of wave motions in the z-plane, which is perpendicular to the
direction that the wave is moving; x and y denote horizontal and vertical coordinates; G(x, y) and ρ(x, y) denote
the shear modulus and the mass density of the solid.

The traction-free condition is presented on the top surface, while the absorbing boundary conditions are
presented on the left, bottom, and right boundaries. The zero initial-value conditions are presented as the system
is initially at rest.

Please note that the information on a targeted incident wave motion is not included in this strong form. They
will be included in the global force vector per the DRM theory of a discrete form. By using the finite element
method, the strong form turns to the following semi-discrete equation:

Mü(t) + Cu̇(t) + Ku(t) = F(t), (2)

where u(t), u̇(t), and ü(t) denote the displacement, velocity, and acceleration vectors of the state problem at time

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



B. P. Guidio, C. Jeong

t, respectively. M, C, and K denote the global mass, damping, and stiffness matrices, respectively, while F is the
global force vector.

2.2 Domain reduction method

In Bielak’s DRM formulation (Bielak et al., 2003; Yoshimura et al., 2003), the semi-infinite solid is subdi-
vided into three different parts: the interior domain Ωi, an interface Γb, and the exterior domain Ωe, as shown in
Fig. 1. Besides, the subscripts i, b, and e are used to denote the nodes on the interior domain of interest, inter-
face, and exterior domain, respectively. The nodes on Γb, and their neighboring exterior nodes, localized at the
fictitious boundary Γe, form the DRM layer. Per the DRM theory, a targeted effective seismic force vector Feff,
obtained from free-field ground motions, is applied on all the nodes on the DRM layer in order to consistently
model incident seismic waves impinging the domain. Bielak’s DRM formulation shows how to use the free-field
displacements and acceleration, u0 and ü0, respectively, at nodes of the DRM layer to determine the effective
seismic force vector Feff.

2.3 Discrete state problem

The time-dependent semi-discrete equation is solved by considering the initial-value conditions and applying
the implicit Newmark time integration. Then, the state problem is formed in the compact form, Qû = F̂, where
matrix Q, solution vector û, and global force vector F̂, are all defined as shown in the authors’ previous work [12].

3 Inverse modeling

Under this inversion method, we determine the control parameters as Pbkj
and Pekj

. They are components of
F̂estm corresponding to γbk and γek , respectively, and tj : γbk is the k-th discrete node on the DRM boundary Γb,
and γek is the k-th discrete node on Γe; and tj is the j-th time step.

3.1 Discrete objective and Lagrangian functional

We attempt to determine the values of control parameters that minimize the discrete objective functional,
which is defined as:

L̂ = 0.5(û− ûm)T B (û− ûm)︸ ︷︷ ︸
misfit

+ 0.5R ûT D û︸ ︷︷ ︸
regularization

, (3)

where û and ûm are obtained by a set of targeted and estimated control parameters, respectively, and B is defined
as ∆tB, where B a square matrix, of which components are all 0 except for those of the diagonal, having values
of all 1, if they correspond to the degrees of freedom at sensor locations. The regularization coefficient is defined
as the constant R, and D is defined as ∆tD, where D is a square matrix, of which components are all 0 except for
those of the diagonal, having values of all 1, if they correspond to the nodes on Ωe.

By imposing state equation onto an objective functional by using the Lagrangian multiplier vector λ̂, we cast
the following Lagrangian functional:

Â = 0.5(û− ûm)T B (û− ûm) + 0.5R ûT D û− λ̂
T

(Qû− F̂estm). (4)

3.2 Optimally conditions

To identify unknown target control parameters, the first-order optimality conditions should be fulfilled. The
first condition, (∂Â/∂λ̂) = 0, will be automatically satisfied when we solve the discrete forward problem.

The second condition, (∂Â/∂û) = 0, will be automatically satisfied when the adjoint problem is solved:
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∂Â
∂û

= −QT λ̂+ B (û− ûm) +RD û = 0︸ ︷︷ ︸
adjoint equation

. (5)

We solve the adjoint problem by marching backward in time as shown in our previous work [12].
The third condition will be satisfied when we solve the control problem, (∂Â/∂F̂estm) = λ̂ = 0, which

implies that a gradient vector, ∂Â/∂F̂estm = ∂L̂/∂F̂estm, is comprised of the component of the vector λ̂ corre-
sponding to the global node numbering and time step of control parameters.

3.3 Control parameters updates

By using the semi-analytical evaluated, gradient vector this work iteratively updates the estimated control
parameters as follows. First, the conjugate-gradient method determines the best search direction, and an optimal
step length is calculated by Newton’s method [11]. Then, the gradient-based minimization scheme updates the
control parameters by summing the previous control parameters and the product between the search direction
and optimal step length. We perform the numerical experiments of the presented inversion method by using our
in-house forward and inverse wave solver written in MATLAB.

4 Numerical Experiment

In this section, a numerical experiment is considered where the ground motions are induced by a vertically-
propagating 1D free-field wave in the domain shown in Fig. 1. Its dimension is 200 m × 60 m, and the shear wave
speeds are Vs1 = 300 m/s, Vs2 = 250 m/s, Vs3 = 200 m/s, Vs4 = 150 m/s, Vs5 = 800 m/s, and Vs6 = 1000 m/s. The
mass density is 1500 kg/m3, and it is uniform in the entire domain. A Ricker waleter signal of a central frequency
of 5 Hz is used as the time signal of the vertically-propagating wave, and sensors are distributed on the top surface
with a 5 m spacing of each other.

The example studies the performance of the presented inversion solver for reconstructing F̂eff and the ground
motions induced by the 1D incident waves. For appraising the accuracy of the presented inverse modeling, the
error norms E and Eu are calculated to evaluate the inversion performance to reconstruct F̂eff and ground motions
in Ωi, respectively.

Figure 2 shows the ground motions induced by targeted effective force and their reconstructed counterparts
without and with using the presented regularization. As shown in the second row of Fig. 2, the reconstructed
ground motions without using the regularization term in the objective functional have a larger amplitude in Ωe

than their targeted counterparts. It is because the minimizer is not provided with any information about the DRM
modeling, specifically with respect to the wave responses in Ωe. Consequently, even though the error Eu between
the targeted and estimated wave responses in Ωi is only 1.40%, Fig. 3 shows that the reconstructed force vector
without using the regularization significantly differs from its targeted counterpart (E = 99.03%).

By utilizing the regularization, the amplitudes of waves in Ωe due to the estimated force vector are minimized
(see the last row of Fig. 2). Consequently, the presented inversion solver can better reconstruct the targeted effective
force vector, as shown in the last column of Fig. 3. After 10,000 iterations using the regularization, the error Eu
between the targeted and estimated ground motions in Ωi is 5.47%. Although the error Eu increased comparing
with the case without regularization, the error E between the targeted and reconstructed force vector dropped to
46.91%.

5 Conclusions

In this study, we explored a new approach for (i) identifying an effective seismic force on a DRM layer as an
incident seismic motion and (ii) reconstructing wave responses in the interior domain in a 2D domain of anti-plane
shear wave motions truncated by WABC. In the presented method, the DRM is used to model incident waves into
the domain, the gradient-based minimization is utilized to tackle the inverse problem, and the DTO approach is
employed to solve the adjoint problem. It was shown that the wave responses in an interior domain surrounded
by a DRM layer can be reconstructed by using the presented method. Furthermore, the regularization term in the
objective functional helps our optimizer minimize the wave responses in the exterior domain and consequently
better reconstruct the targeted effective force.
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Figure 2. Wave responses in the domain induced by (top row) the targeted effective force, (middle row) its re-
constructed counterpart without using the regularization, and (bottom row) its reconstructed counterpart using the
regularization. The dashed line indicates the DRM boundary Γb.

Figure 3. Targeted effective seismic force, its reconstructed counterpart without using the regularization, and its
reconstructed counterpart using the regularization, on Γe and Γb.
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