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Abstract. A frequency-domain method for estimating the mass, stiffness and damping matrices of the mass-spring-
dumper model is presented. The developed estimation is based on the Least Squares Method in the Nonlinear
Regression Approach, where the input data are the elements of the Complex Frequency Response Inverse Matrix
and frequencies, which were chosen randomly from the range of frequencies. The amount of frequencies for
an accurate result is described in this work. It is shown that each element of the mass, stiffness and damping
matrices can be estimated independently, using the corresponding element of the Complex Frequency Response
Inverse Matrix, when the nonlinear regression is adopted properly. Although the method is developed for viscous
damping, it can be generalized for other types of damping, material or hysteresis, for example. Three examples are
employed in order to illustrate the applicability of the proposed method and the results are quite accurate.
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1 Introduction

A multi-degree-of-freedom (MDOF) structural system is usually modeled in terms of mass, stiffness and
damping matrices. The governing equation in the time-domain, Clough and Penzien [1] and Craig [2], considering
N degrees-of-freedom is

[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = {f(t)} . (1)

with the initial conditions

{x(0)} = {x0} and {ẋ(0)} = {ẋ0} . (2)

In eq. (1), [M ], [C] and [K] are the mass, damping and stiffness matrices (N x N), {ẍ(t)} , {ẋ(t)} and {x(t)}
are the accelerations, velocities and displacements vectors (N x 1), while{f(t)} is the external forces vector (N x
1). In eq. (2), {x0} and {ẋ0} are the initials displacements and velocities, respectively.

One can assume that the mass matrix is diagonal and the damping is considered viscous. The elements of the
matrices must be properly allocated in each matrix, according to the structural system disposition. If the external
forces {f(t)} are equal to zero, the movement is natural and called free vibration. Then, eq. (1) becomes
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[M ] {ẍ(t)}+ [C] {ẋ(t)}+ [K] {x(t)} = 0. (3)

For a single-degree-of-freedom (SDOF) system, the undamped natural frequency ωn is

ωn =
√
k/m. (4)

The viscous damping factor ζ is

ζ =
c

ccr
and ccr = 2mωn =

2k

ωn
= 2
√
km. (5)

The damped natural frequency ωd is

ωd = ωn
√

1− ζ2. (6)

For the underdamped SDOF system (ζ < 1), the analytical response of eq. (3) is

x(t) = exp (−ζωnt)
[
x0 cos(ωdt) +

(
u̇0 + ζωnu0

ωd

)
sin(ωdt)

]
. (7)

For an undamped MDOF system, the governing equation of the free vibration is

[M ] {ẍ(t)}+ [K] {x(t)} = 0. (8)

Considering the movement as harmonic, the displacement has the following form

{x(t)} = {X} cos (ωt− α). (9)

Substituting eq. (9) into eq. (8), the eigenvalue problem appears

([K]− ω2[M)] {X} = 0. (10)

The eigenvalues of eq. (10) are the squared natural frequencies of the system and the eigenvectors are the
modes of vibration, which are obtained substituting each eigenvalue into eq. (10), and the Mode Superposition
Method can be used. If the damping components are added, for special types of damping, the system of equations
can become uncoupled. These kinds of damping are called orthogonal, classical, modal or proportional, Craig [2].
One particular proportional damping is the Rayleigh Damping

[C] = α[M ] + β[K]. (11)

where α and β are constants.
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2 Frequency Domain Approach

Applying the Fourier Transform into eq. (1), it is converted from time-domain to frequency-domain, Clough
and Penzien [1] and Craig [2], and becomes

(−ω2[M ] + iω[C] + [K]) {X(ω)} = {F (ω)} . (12)

where ω is the independent variable in the frequency-domain, {X(ω)} the Fourier Transform of {x(t)} and
{F (ω)} the Fourier Transform of {f(t)}. Explaining {X(ω)} in eq. (12), it is obtained

{X(ω)} = (−ω2[M ] + iω[C] + [K])−1 {F (ω)} . (13)

The expression (−ω2[M ] + iω[C] + [K]−1) from eq. (13) is called Complex Frequency Response Matrix
[H(ω)] , Transfer Matrix or Complex Frequency Response Function (CFRF) and has many applications in the
frequency-domain.

[H(ω)] = (−ω2[M ] + iω[C] + [K])−1 or [H(ω)]−1 = (−ω2[M ] + iω[C] + [K]) (14)

The Complex Frequency Response Matrix can be obtained by Modal Testing. The structure under analysis
must be excited by a known type of force, and the applied excitation force and resulting response vibrations, typi-
cally accelerations, are both measured properly by instruments and, after a software data processing, the Complex
Frequency Response Function (CFRF) data can be obtained. There are two common methods of excitation: impact
hammer and modal shaker, Allemang et. al. [3].

For a system with one-degree-of-freedom, with m = 3 kg , ζ = 0.05 and k = 2700N/m.

3 Nonlinear Regression

Regression analysis uses statistical inferences equations, according to Seber and Wild [4], which take the
form:

{Y } = f({X} , {β}) + {ε} . (15)

where: {Y } = a vector of response variables, {X} = a vector of predictors or explanatory variables, {β} = a vector
of parameters, f = a known regression function, {ε} = an error term, with zero mean.

In eq. (15), if f is nonlinear in terms of {β}, the problem is called nonlinear regression analysis, which is the
case of eq. (14), where the relation between the matrices [H]−1 and [M ] is nonlinear with respect to frequency ω,
in fact is of power 2. The most commons techniques to solve nonlinear regression are the Least-Squares Estimation
and the Maximum-Likelihood Estimation. In this work The Least-Squares Estimation is adopted.

The least squares estimator of {β} is called as
{
β̂
}

and is the point where f(
{
β̂
}
) is closest to {Y } in the

sample space. The least squares estimator is calculated from minimizing the residual sum of equations

S(β)) =

n∑
i=1

{yi − f(xi, β)}2 (16)

where n is the size of the data set.
After calculating the differential of S with relation to each β, the system of equations is

∂ {S(β)}
∂βj

∣∣∣∣
β=β̂

= 0, for j = 1, ...,m (17)
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where m is the number of parameters β.
Considering eq. (16) and eq. (17), the final system of equations turns

n∑
i=1

∂f(xi, β)

∂βj
{yi − f(xi, β)}

∣∣∣∣
β=β̂

= 0, for i = 1, ..., n and j = 1, ...,m (18)

or in Matrix Form

[V (β̂] {ε̂} = 0 (19)

where [V (β̂)] = ∂f(xi,β)
∂βj

4 Examples of Application

Three examples of application are shown in order to illustrate the Methodology, which are in Ferro [5]. The
first one is a single-degree-of-freedom system, the second one is a system with two degrees-of-freedom and the
third a system with seven degrees-of-freedom. Python language was used in order to fit the data, where the input
data are each element of the inverse of the matrix [H] and four aleatory frequencies. At least four frequencies must
be used for a good accuracy, because the relation between the matrices [H] and [M ] and the frequency is of power
2. In fact, each element of [H]−1, [M ], [C] and [K] are related separately and independently, according to the
following relation

H−1(ω)(i, j) = −ω2M(i, j) + iωC(i, j) +K(i, j) (20)

The command polyfit.numpy of Python was used to calculate each M(i, j), C(i, j) and K(i, j) from eq. (20)
when H−1(i, j) is known and four frequencies are randomly chosen.

4.1 Example 1 - SDOF System

In this example, the system has m = 3 kg, ζ = 0.05 and k = 2700N/m. Then, the expected values of m
and k are 3 and 2700 and for c, the value is

c = 2× ζ ×
√
k ×m = 2× 0.05×

√
2700× 3 = 9N.s/m (21)

The fitting equation is

H−1 = −ω2m+ iωc+ k (22)

The command numpy.polyfit of Python language was used to fit eq. (22) with 4 random frequency values,
which are ω1 = 0.0 rad/s , ω2 = 0.6545 rad/s , ω3 = 1.3090 rad/s and ω4 = 1.96350 rad/s.

The fitting results are m = 3.0000 c = 9.0000 and k = 2700.0000, which indicate an excellent
estimation.

4.2 Example 2 - 2 DOF System

In this example, from Craig [2], page 357, and shown in Fig. 1, wherem1 = m2 = 1 kg, c1 = 0.6284N.s/m,
c2 = 0.0628N.s/m, k1 = 987N/m and k2 = 217N/m, the mass [M ], damping [C] and stiffness [K] matrices
are
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Figure 1. System of example 2

[M ] =

1 0

0 1

 [C] =

 0.6912 −0.0628

−0.0628 0.6912

 [K] =

1204 −217

−217 1204



Again, the command numpy.polyfit was used for each element of H−1(ω) and the four frequencies ω1 =
0.0 rad/s , ω2 = 20.9440 rad/s , ω3 = 41.8879 rad/s and ω4 = 62.8319 rad/s. The fitting results are shown in
Table 1.

Table 1. Results for Mass, Damping and Stiffness Matrices of Example 2

(i, j) M(i, j) C(i, j) K(i, j)

(1,1) 1.0000 0.6912 1204.0000
(1,2) -1.5468 e-17 -0.0628 -217.0000
(2,1) -1.5468 e-17 -0.0628 -217.0000
(2,2) 1.0000 0.6912 1204.0000

4.3 Example 3 - 7 DOF System

In this example, from Chen [6], and shown in Fig. 2, the parameters are m1 = m2 = m3 = m4 = m5 =
m6 = m7 = 1, 0 kg, k1 = 10000N/m, k2 = 20000N/m and c = 20N.s/m. The mass [M ], damping [C] and
stiffness [K] matrices of the system are

[M ] =



1. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0.

0. 0. 1. 0. 0. 0. 0.

0. 0. 0. 1. 0. 0. 0.

0. 0. 0. 0. 1. 0. 0.

0. 0. 0. 0. 0. 1. 0.

0. 0. 0. 0. 0. 0. 1.


[C] =



0. 0. 0. 0. 0. 0. 0.

0. 20. 0. 0. 0. 0. 0.

0. 0. 20. 0. 0. 0. −20.

0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 20. 0. 0.

0. 0. 0. 0. 0. 20. −20.

0. 0. −20. 0. 0. −20. 40.
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Figure 2. System of example 3

[K] =



4. 0. −2. 0. 0. 0. −1.

0. 3. −1. 0. 0. 0. 0.

−2. −1. 5. 0. 0. 0. −1.

0. 0. 0. 6. −2. −1. −2.

0. 0. 0. −2. 4. 0. 0.

0. 0. 0. −1. 0. 3. −2.

−1. 0. −1. −2. 0. −2. 6.


× 104

After using the command numpy.polyfit from Python language in each element of [H]−1 and the four fre-
quencies ω1 = 0.0 rad/s , ω2 = 20.9440 rad/s , ω3 = 41.8879 rad/s and ω4 = 62.8319 rad/s, the fitting results
are shown in Table 2.

Comparing the results on tables 1 and 2 with the correspondent matrices [M ] , [C] and [K], it can be concluded
that they are quite good.

5 Conclusions

A Nonlinear Regression technique was used in order to estimate the Mass, Damping and Stiffness Matrices
of spring-mass-damper systems in the frequency-domain. It was shown that the equations for the fitting problem
is uncoupled. Then, each element of the matrices can be calculated independently and separately. Three examples
were used in order to illustrate the methodology and the results were quite good in all of them. This approach can
be adopted for different kind of damping and continuous structural systems, waves propagation, for example, see
Mansur [7] .

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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Table 2. Results for Mass, Damping and Stiffness Matrices of Example 3

(i, j) M(i, j) C(i, j) K(i, j)

(1,1) 1.0000 0.0000 4.0000 e+04
(1,3) -1.5510 e-14 0.0000 -2.0000 e+04
(1,7) -7.7550 e-15 0.0000 -1.0000 e+04
(2,2) 1.0000 20.0000 3.0000 e+04
(2,3) -7.7550 e-15 0.0000 -1.0000 e+04
(3,3) 1.0000 20.0000 5.0000 e+04
(3,7) -7.7550 e-15 -20.0000 -1.0000 e+04
(4,4) 1.0000 0.0000 6.0000 e+04
(4,5) -1.5510 e-14 0.0000 -2.0000 e+04
(4,6) -7.7550 e-15 0.0000 -1.0000 e+04
(4,7) -1.5510 e-14 0.0000 -2.0000 e+04
(5,5) 1.0000 20.0000 4.0000 e+04
(6,6) 1.0000 20.0000 3.0000 e+04
(6,7) -1.5510 e-14 -20.0000 -2.0000 e+04
(7,7) 1.0000 40.0000 6.0000 e+04
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