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Abstract. Well test comprises a set of planned data acquisition activities and interpretation. The acquired pressure
and temperature data are used to estimate reservoir properties and oil field performance. The pressure data have
several noise sources that may compromise the accuracy of test results. The noise may mask the transient reservoir
behavior. Therefore, estimated reservoir properties, such as permeability, porosity, and skin effects, from those
acquired field data have a high level of uncertainty.

In this work, we use an in-house flow simulator that solves the complete coupled system of equations repre-
senting the wellbore/reservoir system. The thermal energy balance equation considers the Joule-Thomson heating
and cooling, adiabatic fluid expansion/compression, conduction, and convection effects. The synthetic measured
data was obtained by adding gaussian and harmonics noises to simulate equipment and tidal effects, respectively,
to the solution of the problem for different scenarios.

Reservoir properties estimation using pressure and temperature transient data obtained from well tests is a
classical inverse problem. We use Ensemble Smoother with Multiple Data Assimilation (ES-MDA) as a non-
deterministic method to solve this inverse problem. It provides a better data matching and quantification of uncer-
tainty when compared to other methods.

The results show that the properties of a reservoir with skin are better characterized by using combined
pressure and temperature data.
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1 Introduction

Nowadays, a common practice in deep water environment is to install permanent downhole gauges - PDGs
(pressure and temperature sensors) in wells completed with intelligent completion valves (ICVs) for the purpose of
surveillance and reservoir management. Transient data obtained from those gauges have been used to characterize
reservoir properties and monitoring well productivity change and facility operation performance [1, 2]. Pressure
and temperature data from a PDGs come to users in a high frenquency and highly accurate, which enable to explore
subtle signals in pressure data caused by perturbations of small amplitude such as ocean tides effect in deep water
environment. Presence of sinusoidal pressure oscillation was observed in the past during well test. The amplitude
of those oscillations are of the order of 1 psi and their frequency suggest the tidal effect [3, 4]. Although these
periodic oscillations do not affect the oil production process, they have an important influence in the pressure data
interpretation and can lead to errors during static tests and pulse tests. It is well known that during the late time
period of a pressure buildup test, the additional pressure change due to tidal effects can be large enough so that it
is difficult to determine information about flow regimes from the late-time buildup data [5]. In order to improve
the information content of the computed pressure derivative, usually the tidal component is removed from the
measured pressure data. Levitan and Phan [5] used signals from either tidal potencial function or sea floor pressure
to separate the tidal signals from the pressure data. Fast fourier transform (FFT) is often utilized in analysing the
pressure data in a frequency domain [6, 7]. The main advantage is to highlight the major frequency of all tidal
constituents. However, most of the times, not all the tidal components are filtered completely, which leaves a
few harmonic components in the pressure data. Due to unfiltered tidal signals there are misinterpretations in well
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test analysis [8]. Therefore, there is a challenge in estimate reservoir properties without filtering these periodic
disturbance by using of inverse problem methods.

In this work, a synthetic reservoir was studied using an in-house flow simulator that considers Joule-Thomson
heating and cooling, adiabatic fluid expansion/compression, conduction, and convection effects in the thermal en-
ergy balance equation to provide temperature and pressure data. The pressure and temperature transient result is
modified by adding of a white gaussian noise in order to represent noise coming from the sensor equipment. To
simulate periodic disturbances such as tidal effect it was added also an harmonic noise. After that, the inverse
problem was solved using an ensemble-based method to characterize the reservoir using the pressure and temper-
ature data artificially modified taking into account different source of noise coming form the equipment and by
the tidal effect. To estimate the reservoir properties and evaluate the uncertainties into the variables of analysis,
the ensemble smoother with multiple data assimilation (ES-MDA) is applied creating many models to produce
a confidence interval to the parameters. Results show the ES-MDA method applied with the coupled pressure
and temperature transient data provides better reservoir characterization and uncertainty quantification even for
periodic disturbances introduced in the pressure data.

Figure 1. Wellbore-reservoir scheme with the considered components and the respectively geometry.

2 Mathematichal formulation

This work is divided into two stages. First, the direct problem is solved, in which all the physics of the
problem is being represented in order to generate pressure and temperature data evolution. Second, the ES-MDA
is used to estimate the reservoir parameters taken as base the pressure and the temperature data.

2.1 Direct problem

The direct problem consists in solving the mass, momentum, and energy conservation equations in the cou-
pled wellbore-reservoir system, described in Onur et al. [9]. To solve the system of equations that compose the
direct problem, a finite difference method is used. The validation of the method, as well as better explanations
of its implementation, can be seen in Mattoso et al. [10] and Mattoso et al. [11]. Reservoir properties and well
parameters used in this work were also used in Galvao et al. [12] and Galvao et al. [13], unless permeability
distribution.

2.2 Inverse problem

The problem of estimating parameters of an unknown system by observing its response to known disturbances
is classified as an inverse problem. The procedure of adjusting data to observed data is known in the literature as
history matching (HM). The observed data here is the transient bottom hole pressure and temperature during the
drawdown period. The Ensamble smoother with multiple data assimilation (ES-MDA) method introduced by
Emerick and Reynolds [14] is used to solve the inverse problem. The HM and uncertainty analysis are built by
using ES-MDA associated with the parameters of interest. This method was adopted because provides a better data
match than the EnKF and others ensembles methods, as discussed in Emerick and Reynolds [15]. The problem of
estimating parameters of an unknown system by observing its response to known disturbances is classified as an
inverse problem. The procedure of adjusting data to observed data is known in the literature as history matching
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(HM). The observed data here is the transient bottom hole pressure and temperature during the drawdown period.
The Ensamble smoother with multiple data assimilation (ES-MDA) method introduced by Emerick and Reynolds
is used to solve the inverse problem.

In this work, ES-MDA method is used to estimate and perform the uncertainty analysis of the parameter
vector m, that contains the properties from the reservoir represented by Fig.1.

m = [log(K1), log(K2), αskin and φ]
T (1)

To reduce the amplitude of the initial range from the permeabilty, the log scale is commonly used. In the
vector m, the K1 is the skin zone permeability represented by the yellow color on the reservoir in fig.1. The
variableK2 is the permeability of the region out of skin zone represented by the blue color on the reservoir in fig.1.
φ is the porosity of the reservoir, which is considered homogenous in this work. And t the skin radius (rskin), is
estimated as a multiple of the well radius (rw), named as αskin and defined as:

αskin = rskin/rwb (2)

The observed data used in this work were produced by inserting the parameter vector m with the pre-defined
values (the ”likely solution” of the inverse problem) in the direct problem solver, producing as a response a time
series of pressure and temperature (d). To approximate real field data, white noise was introduced in all analyzes
(measurably noise) and the harmonic noise (tidal noise) was introduced only in pressure data for some analysis.

dobs = d +White Noise+Harmonic Noise (3)

The tidal signal mixed in the bottom hole pressure is assumed to be a damped and shifted version of the tidal
signal measured from the sea floor pressure gauges, as we can shown in Fig.2.

Figure 2. Reference tidal signal measured in the seafloor and the observed data measured in the field case (adapted
from Zha [16]).

In the ES-MDA, the observed data (dobs) is perturbed by adding another Guassian distribution in each assim-
ilation originating the duc, this procedure tends to reduce the sampling problems caused by matching outliers that
may be created when the observed data (dobs) is perturbed(Emerick and Reynolds [14]).

duc = dobs +

√
αiC

1/2
D Zd , on which Zd = N(0, IdNd

) (4)

In the analyzes considering combined observed data, it is necessary the observed data to be normalized. The
covariance matrix of measurement errors CD used is a block-diagonal matrix, which has its diagonal equal to 1 for
the part related to the pressure data and the absolute value of the Joule-Thomson coefficient for the temperature
data. This matrix was multiplied by a weight of 10−4 to improve the estimates. αi is the inflation coefficient that
satisfies:

Na∑
i=1

1

αi
= 1 (5)

In this work, the αi was set constante and equal to the number of assimilations Na. The update process of the
vector parameters m is defined as follow:
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ma
j = mp

j + [CMD(CDD + αiCD)−1](duc − dp
j ) (6)

Where the superscripts ”a” means the present ensemble and ”p” means the prior. The subscript ”j” is the
ensemble counter that goes from 1 to Ne individuals. The CMD is the cross-covariance matrix between the
parameters and the simulated data and CDD is the auto-covariance matrix of the simulated data and defined as
follow:

CMD =
1

Ne − 1

Ne∑
j=1

(mf
j − mf )(df

j − df
)T (7)

CDD =
1

Ne − 1

Ne∑
j=1

(df
j − df

)(df
j − df

)T (8)

3 Results

This work used a synthetic reservoir with a skin zone near the well, represented in Fig.3. The ES-MDA
method is tested to estimate reservoir parameters using observed data which has periodic disturbances. We com-
pared the estimation made considering only the pressure data with the white noise and the combined(pressure and
temperature) data with the white noise and different magnitude of harmonic noises. The parameter estimation was
obtained by using 4 assimilations in the ES-MDA method. The vector mtrue represents the expected values for
each variable.

mtrue = [log(32), log(100), 5, 0.12]T (9)

Figure 3. Reservoir configuration, with the top and longitudinal views

Figure 4 shows the pressure and temperature time series in the semi-log scale of time with different combi-
nations of noises. The referencial value for the white noise and the tidal effect was 50KPa, this means that the
blue curve is the simulated data in addition with 50KPa from the white noise and 300KPa from the tidal effect.
The semi-log plot show that the temperatura is detecting two permeabilities regions, while the pressure is detecting
only one region.

Figure 4. Comparison of the differentes pressure and temperature times series in a semi-log scale.
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Figure 5 contains the initial distributions of the parameters m. Figure 6 and 7 show the estimation analysis
for each parameters, considering only pressure data (”Pressure(White+0xTidal)”) and the combined data with
multiples amplitudes of the tidal effect.

Figure 5. Initial distributions of the parameters

Figure 6. Comparison of estimates made considering only pressure data (’Pressure(white+0xTidal)’) with those
made using combined data with differents amplitudes of harmonic noise. On the left we have the estimated of the
skin permeability, and on the right we have the permeability out of the skin zone.

Figure 7. Comparison of estimates made considering only pressure data (’Pressure(white+0xTidal)’) with those
made using combined data with differents amplitudes of harmonic noise. On the left we have the estimated of the
porosity (φ), and on the right we have the αskin.

Figure 6 shows that even increasing the harmonic noise, the combined data still provides an accurate estimate
of the skin permeability (K1), better than the simple pressure analysis. For the permeability out of the skin
zone (K2), as we increase the harmonic noise the accuracy of the estimations decreases, but still better than only
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pressure analysis. Figure 7 contains the estimations for the porosity (φ) and αskin, one more time the addition of
the temperature data improves the accuracy of the estimations.

Figure 8 and 9 show the comparison between the time series created with the initial distribution of parameters,
in grey, with the time series generated with the final ensemble of parameters obtained with the ES-MDA, in blue.
The red points are the observed data, ploted together to evaluated the accuracy of the final times series.

Figure 8. Comparison of the pressure evolution originated with the initial set of parameters (in gray). With the
observed data (in red) and with the calculated profiles with the final set of parameters after the 4 assimilations of
the ES-MDA method (in blue).

Figure 9. Comparison of the pressure and temperature evolution originated with the initial set of parameters (in
gray). With the observed data (in red) and with the calculated evolution (in blue) with the final set of parameters
after the 4 assimilations of the ES-MDA method , considering the combined pressure and temperature data. For
this case, was considered the highest harmonic noise, with 300KPa of amplitude.

Figure 8 contains the plot of the pressure times series originated with the analysis made with only pressure
data. Despite the close fit of the data, the analysis considering only the pressure data could not characterize the
skin region near the well. Figure 9 contains the plots of the pressure and temperature times series, originated from
the analysis of the combined observe data considering the highest harmonic noise analyzed. Despite containing
greater noise, parameter estimates for these cases were more accurate than estimates made with only pressure data
without considering harmonic noise.

4 Conclusions

The ES-MDA method with combined pressure and temperature data shows to be more accurately than only
considering pressure data. The ES-MDA method seems to be a good candidate to use observed data even with
periodic perturbation (tidal effect) without any filtering process to estimate reservoir parameters.
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