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Abstract. The use of wind turbine is increasing all over the world. Floating support-platform configurations, such 

barge, are used at deep water conditions. The barge configuration achieves basic static stability in pitch and roll 

using a large waterplane area and shallow draft. Such structures can exhibit large displacements when vibrating 

which demands a nonlinear dynamic analysis. Passive structural control, such a tuned mass damper could be used 

in order to keep the structure stability. The main goal of this work is to investigate the effects of a tuned mass 

damper (TMD) upon the nonlinear oscillation of a barge-type floating offshore turbine. The analysis uses the 

nonlinear normal modes to obtain reduced order models of the system. The reduced order model results are 

compared to the numerical integration of the equations of motion and a good agreement between both results is 

found. The analytical obtained method is used to investigate important nonlinear phenomena such jumping and 

multiple coexisting solutions. A parametric TMD damping and mass ratio is performed in order to obtain their 

optimized values. 
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1  Introduction 

As a renewable energy source, offshore wind energy has been focus of many scientific studies and economic 

exploitation (Vis and Varsavas,[1]). Floating offshore wind turbines (FWOT) become economically more 

attractive than fixed ones when they are employed at deep water wind farms (Hu et al., [2]). As an example of 

floating platforms that can be used to support FWOT, the barge-type achieves basic static stability in pitch and roll 

using a large waterplane area and shallow draft (Collu et al., [3]). Combine large dimensions, high specific strength 

material and floating support, these slender structures (Zuo et al, [4]) barge FWOT could exhibits large 

displacement motion under the action of environmental forces such as winds, currents and waves. This excitation 

may impose to the FWOT tower considerable loads, which could suffer damage, fatigue and maintenance costs. 

One approach to load mitigation is to use the structural control techniques to directly inhibit platform or tower 

vibration, where an auxiliary spring mass system adhered to the primary structure is commonly used. Such a device 

is known as tuned mass damper (TMD) (Li and Gao, [5]). In the lasty years many studies regarding the TMD 

performance at load mitigation and vibration suppress has be conducted on FWOTs (Stewart,[6]), including barge 

ones. Xi and co-workers [7] investigated a platform-based TMD, while He and co-workers [8] considered a tower-

based one. Both studies consider the optimization of TMD parameters such as mass, stiffness and damping. A 

further modification was investigated by Sarkar and Fitzgerald [9], which have used a tuned mass-damper-inerter 

to reduce a spar FWOT vibration. However, these studies focused on the linearized systems. Linear analysis could 

fail to capture and describe important intrinsically nonlinear phenomena. A nonlinear dynamic analysis is, 

therefore, mandatory for a safe design of those structures. The use of models with a large number of degrees-of-

freedom such as element finite schemes could be a very cumbersome task, mainly in parametric analysis and 

optimization studies. An alternative to overcome such difficulties is to use the nonlinear normal modes (NNMs) 

concept to obtain reduced order models of the problem (Gavassoni et al., [10]). Previously, the authors has been 
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showed that the NNMs could satisfactory be used to perform nonlinear analysis of FWOTs [11]. 

This work uses the nonlinear normal modes to derive a reduced order model of a wind turbine supported by 

an ITI Energy Barge 40 m x 40 m x 10 m barge with eight catenary mooring lines (Jonkman, [12]). Additionally, 

the structural responses of the wind turbine are mitigated by using a single-degree of freedom tower-based TMD 

with a elastic-linear stiffness coefficient. The Lagrange formulation is used to derive the nonlinear equations of 

motion of the FWOT-TMD system. The reduced order model (ROM) obtained by the use of the NNMs are used 

to study the forced vibrations of the problem. Some rich nonlinear dynamics phenomena are found such as multiple 

periodic solutions, node-saddle bifurcations, unstable solutions, jump and dynamic hysteresis. A parametric study 

on the TMD configuration is carried out to study its vibration suppression performance, resulting in optimized 

values;  

2  Formulation 

This study considers a National Renewable Energy Laboratory (NREL) 5-MW wind turbine, completely 

described by Jonkman and coworkers [13], supported by an ITI Energy barge floating platform whose description 

is given by Jonkman [12].The barge-tower structure is modelled here using a 3-Degrees-of-freedom (DOF) rigid 

body model commonly used in the specialized literature ([2]; [6]; [7]; [8]; [11]; [14] and [15]) and showed in Fig. 

1. The 3 DOF are: the barge pitch motion (B); the tower fore-aft motion (T) and the displacement of the TMD 

from the vertical axis z (xTMD). The tower is modelled as a rigid beam with a single lumped mass (mT) (considering 

the tower, nacelle and blades masses together) located at its center of mass distant LT from the hinged point O. The 

tower-barge connection stiffness is modelled as a linear rotational spring of constant equal to kT. The barge mass, 

mB, is located at a distance LB from the hinged point O. The restoring moments, given by mooring systems and 

buoyance, are modelled using a linear rotational spring of constant equal to kB. The TMD mass, mTMD, is located 

at a distance LTMD from the hinged point O and has a linear stiffness coefficient equal to kTMD. The equivalent 

damping coefficients for each DOF are: dB, dT and dTMD. 

 

 

Table 1. FWOT parameters (He et al. [8] and Jonkman [12]). 

Parameter Nomenclature Value 

Platform Moment of Inertia IB 1.98E+8 kg

Tower Moment of Inertia IT 2.83E+9 kg

Platform Center of Mass Height LB 0.2818 

Tower Center of Mass Height LT 64.00 

TMD Height LTMD 92.00 

Platform Mass mB 5.452E+6 

Tower Mass mT 5.5598E+5 

Platform Rotational Spring Value kB 1.78E+9 N

Tower Rotational Spring Value kT 1.29E+10 N

Gravitation Acceleration g 9.78 

Figure 1. Structural model of the 

barge-type wind turbine with a 

TMD 

 

The Hamilton’s Principle is used to derive the equations of motion of the FWOT-TMD system: 

� � �� − �U − W	
dt = 0��

��
; (1) 

where δ is the variational operator, T is the kinetic energy, U the elastic potential energy, W the work done by the 

external loads, and t1 and t2 are initial and final times. 

The kinetic and elastic potential energy expressions are, respectively, equal to: 
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where IB and IT are, respectively, the central moments of inertia of the barge and the tower. 

The work done by the weight of tower and barge is given by:  

8 = ��9 4��1 − cos���		 − ��94��1 − cos���		 − �� !9#� ! tan���	; 
(4) 

where g is the gravitational acceleration. 

The TMD parameters are given for the following relations: 

�� ! = @��; 
(5) 

*� ! = ABC�
)DEF� @��; 

(6) 

�� ! = 2G@�� ABC�
)DEF; 

(7) 

where  is the tuning mass ratio, 01 is the first natural frequency of the uncontrolled system and  is the damping 

ratio. 

The equations of motion are obtained by substituting eqs. (2) - (7) into eq. (1) and by applying the 

variational techniques. The resulted equations are rewritten as Hamilton’s type equations using the Cramer’s rule. 

As a first nonlinear approximated analysis, it is common to expand the nonlinear equations of motion in Taylor’s 

series up to third degree terms. The use of the parameters listed on Table 1 and =1% results in the following 

approximated free-undamped equations of motion: 

�H� + 7.4217�� − 6.5152�� − 0.0013��O = 0; (8) 

�H� − 4.5583�� + 4.4397�� − 0.0001#� ! + 0.0263��O − 0.0001#� !��� = 0; (9) 

#H� ! − 34.3136�� + 0.2726#� ! + 10.6089��O − 4.4397#� !��� + 0.0001��#� !�
+ 4.5583����#� ! + 3.0000#R� !�R��� + 1.0000#� !�R�� = 0. (10) 

3  Linear modal analysis 

The underlying linear problem corresponded to eqs. (8) and (10) and the use of the parameters listed on Table 

1 result in the following natural frequencies of vibration for the FWOT: 01=0.5273 rad/s (0.0839 Hz) and 02 = 

3.4028 rad/s (0.5416 Hz). The controlled system has three linear modes, whose fundamental frequency, for = 

1%, 1=0.4881 rad/s (0.0777 Hz) is related to TMD. The towers and barge related frequencies for the controlled 

system, considering =1%, are equal to: =0.5614 rad/s (0.0893 Hz), and 3 = 3.4028 rad/s (0.5416 Hz) 

respectively. The effect of the tunning mass rate, , on the system natural frequencies could be observed in Fig. 2. 

The  parameter, in Fig. 2 stands for the relations 1/01; 2/01 and 3/03. It can be observed from Fig. 2 that 

the increasing of mTMD decreases the first natural frequency and increases the second one. The third mode remains 

practically unchanged, this is expected, since the third frequency is related to the barge platform, which is 

unaffected by the TMD motions due to its position at the tower’s top. The decreasing of the first frequency with 

the TMD mass increasing is explained, according to Sarkar and Fitzgerald [9], by its impact on the tower’s stability. 

In order to avoid external resonance, the natural frequencies of the FOWT must be located out of the typical wave 

frequency range, which varies according to Bachynski [16] from 0.04 (0.25 rad/s) to 0.25 Hz (1.57 rad/s). Thus, 

an external resonance could happen in the vicinity of the first natural frequency of the uncontrolled FWOT. For 
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the controlled system this resonant spectrum band is much wider due to the tuning and its effect on the system first 

two frequencies. The TMD’s positive effect is due the suppression mechanism that damps the energy out using it 

to TMD stroke as showed by He et al. [8]. 

 

 

 

Figure 2. Controlled natural frequencies x TMD mass variation. 

4  Nonlinear modal analysis 

The invariant manifold approach proposed by Shaw and Pierre [17] is used to derive the nonlinear normal 

modes (NNMs) of the system. Each NNM, according this approach, corresponds to a motion bounded by a 

hypersurface in the system phase space. This surface is tangent, at the equilibrium position, to the eigenspace 

formed by the linear modes of the linearized underlying problem and is given by the solution of the following 

nonlinear partial differential equations system (Pescheck et al [18]): 

ST�U, W	 = XYZ�U, W	
XU W + XYZ�U, W	

XW [1 AU, Y2�U, W	, W, S2�U, W	, Y3�U, W	, S3�U, W	F  ⋁ Z
= 2 ,3 ; (11) 

[T AU, Y2�U, W	, W, S2�U, W	, Y3�U, W	, S3�U, W	F
= XSZ�U, W	

XU W + XSZ�U, W	
XW [1 AU, Y2�U, W	, W, S2�U, W	, Y3�U, W	, S3�U, W	F  ∨ Z

= 2,3. (12) 

The system of equations (11) and (12) governs the motion corresponding to a single nonlinear mode, which 

can be parameterized by the displacement-velocity coordinates pair of a single DOF of the system, (u, v) which is 

called the master pair. In this work �� = U and �R� = W are taken as the master pair while the remaining degrees-

of-freedom, called slave coordinates, are related to the master pair via constraint equations �� = Y� ; �R� = S�; 

#� ! = YO and #R� ! = SO. The f1 ,f2, and f3 functions are from eqs. (8) - (10). 

The constraint functions (P2, Q2, P3 and Q3) determine the invariant manifold geometry for a given NNM and 

are the solution of eqs. (11) and (12), which in general, do not have an exact closed form solution, except in the 

presence of certain conditions of symmetry (Pescheck et al [18]): Thus, the asymptotical approximation method 

proposed by Shaw and Pierre [17] can be used in this case. This is done by assuming a cubic polynomial solution 

due to the type of non-linearity linearities present in eqs (8) - (10), and analytically solving the system of equations 



Elvidio. Gavassoni, Paulo D. G. Zwierzikowski  

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

defined by eqs. (11) and (12). This results in three real solutions for the coefficients of the power series assumed 

as constraint functions, one for each NNM. Replacing the generalized coordinates of the master and the slave pairs 

into the equations of motion, the following forced-damped one-degree-of-freedom nonlinear modal oscillators are 

obtained for the first, second and third NNMs, respectively, taken =0.1%:  

UH + 0.2382U + 0.9761GUR − 0.0068UO + 1.1015UUR � = 0.0365Γsin �`�	; (13) 

UH + 0.3151U + 1.1227GUR + 0.0422UO + 0.7136UUR � = 0.0365Γ sin�`�	 ; (14) 

UH + 11.5807U + 6.8061GUR + 0.0119UO − 0.0011UUR � = 0.0365Γ sin�`�	 ; (15) 

where  is included to facilitate parametric studies and its equal to M/M0, where M0 is the moment caused by the 

weight of the displaced volume of water corresponded to the motion of the barge draft and M is the external 

moment magnitude.  

As the resonant response of a structural system occurs at the vicinity of NNM motion (Vakakis et al., [19]), 

the modal oscillators given by eqs. (13) - (15) can provide useful information about the forced oscillations of the 

FWOT-TMD system. As a preliminary study an external harmonic moment of amplitude equal to M and frequency 

 is used here. Those modal oscillators can be used to describe the behavior of a specific motion corresponding to 

a NNM, identifying important nonlinear dynamic phenomena and corresponding, also, to a reduction in the order 

of the problem, which facilitates the nonlinear vibration study of the system. The solution using the modal 

oscillators concurs with the numerical integration of the nonlinear equations of motion up to amplitudes of 1.0 rad 

for both modes according to a preliminary study conducted by the authors of the uncontrolled system [11]. 

The resonance curves can be obtained using the harmonic balance method and are shown for the first and 

second modes in Fig. 3 (a) and for the third mode inf Fig. 3 (b) using a dimensionless frequency parameter defined 

as =/01. From Fig. 3 it is possible to observe a hardening behavior, and both jump and hysteresis phenomena, 

indicating that the forced response of FOWT is bistable, with two possible amplitudes of motion for each 

frequency, for some set of damping factor and amplitude of external moment values. This is due to two saddle-

node bifurcations separating the stable and unstable branches along the nonlinear resonance curves. By comparing 

the controlled system with the uncontrolled case, which first mode is included on Figure 3 (a), one can observe the 

fore-aft suppression (distance between the curves peaks) due to the TMD action. The controlled system third mode, 

which corresponds to the uncontrolled system second one, remains practically unchanged in respect to  values 

variation, in accordance to the linear modal analysis results. 

(a) (b) 

Figure 3. Resonances curves: (a) 1st and 2nd NNMs; (b) 3rd NNM. 

 

The suppression rate, , depends upon the TMD parameters, mainly the  ratio, whose values is about 0.25% 

to 2.5% in current engineering structures according to He and co-workers [8]. Smaller  values lead to higher 

peaks for the 2nd mode (while the 1st mode peak gets smaller). On the other hand, larger  values lead to higher 
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peaks for the 1st mode (while the 2nd mode peak gets smaller). The optimum mass ratio values, op, which 

corresponds to equal first and second peaks, can be determined using the 1-DOF oscillators given by eqs. (13) and 

(14) and the balance harmonic method. The obtained optimum  values are listed on Table 2 for some  and  

values. 

Table 2. Optimum  values.  

= 0.090 = 0.10 

 op (%)  (%)  op (%)  (%) 

0.08 0.86 -16.85 0.050 2.63 -33.7 

0.09 1.03 -19.16 0.075 1.55 -25.11 

0.10 1.02 -21.29 0.090 1.20 -21.29 

0.15 2.09 -29.87 0.100 1.03 -19.16 

0.20 2.65 -36.28 0.150 0.55 -11.86 

0.25 3.86 -40.15 - - - 

            
 

The maximum obtained  value for the parameters set investigated is about -40%, confirming the positive 

effects of the TMD. However this h maximum value is minor compared to the -60% obtained by He et al. [8] for 

the linear analysis. From Table 2 results one can observe the suppression rate increases to larger values of external 

force magnitude and smaller damping factors. However smaller  and larger  values demand larger TMD masses 

to optimizes its performance. FWOT stability is highly affected by the TMD mass. This fact results that the 

nonlinear observed phenomena get more prominence with the op increasing. Since the jump phenomenon is very 

sensitive to the damping factor and in a smaller degree to the external moment magnitude, the richer nonlinearity 

due to larger op values can be confirmed by the minimum required damping factor (min and the maximum 

allowable moment magnitude (max values in order to avoid jump phenomenon (and the included unstable 

solutions) as showed on Table 3, which also shows those parameters values for the uncontrolled system. It can be 

observed from Table 3 results that the TMD use greatly reduces the domain of possible  and  parameters whose 

unstable solutions do not exist. This domain gets smaller with the increasing of TMD mass ratio. 

 

Table 3. Damping factor and force magnitude values to avoid jumping phenomenon. 

                

  
op (%)  

Controlled system 

  

Uncontrolled system 

    

        min max min max   

  0.55 0.015 0.10 0.059 0.012 0.011 0.157   

  0.86 0.090 0.08 0.052 0.006 0.010 0.073   

  1.03 0.010 0.10 0.060 0.007 0.011 0.085   

  1.20 0.090 0.10 0.061 0.006 0.011 0.073   

  1.55 0.075 0.10 0.062 0.004 0.011 0.075   

  2.09 0.090 0.15 0.083 0.005 0.015 0.073   

  2.63 0.050 0.10 0.065 0.004 0.011 0.030   

  2.65 0.090 0.20 0.102 0.005 0.018 0.073   

  3.86 0.090 0.25 0.126 0.004 0.020 0.073   
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5  Conclusions 

According to the results of this work it is possible to obtain important features of the nonlinear dynamic behavior 

of a barge-type FWOT controlled by a TMD using the nonlinear normal modes theory. The TMD performance 

was investigated in the nonlinear analysis. A maximum vibration suppression rate equal to -40% was observed for 

the studied cases. The addition of the TMD enriches the system nonlinearities, mainly for the first and second 

modes of the system. As the TMD mass gets larger the system parameters domain of instability also becomes 

larger. Such instability, linked to jumps between the coexisting solutions in an evolving dynamic environment 

which can be very harmful to the Barge FOWT structure. 
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