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Abstract. Viscoelastic links can be characterized by the connection of a structure to the ground by a device with a 

layer of viscoelastic material. When the structure vibrates, it provokes a relative displacement between the ground 

and itself, leading to a deformation on the viscoelastic material. Due to high damping, viscoelastic materials are 

used in devices for vibration control, working through dissipation of vibratory energy, and introducing stiffness. 

Mechanical properties of viscoelastic materials vary, mainly, according with temperature and vibration frequency. 

Changes in environmental conditions, like temperature, can lead to a non-optimal behavior of devices designed 

with viscoelastic materials. The GVIBS group, which the authors are part of, has been developing over decades a 

methodology for optimal design of passive vibration control devices, including some that use viscoelastic 

materials. The goal of this paper is to expand the group methodology to design viscoelastic links, as well as model, 

into a graphical interface, the effects of temperature changes on the behavior of viscoelastic links. A Fortran code 

is developed to optimize the physical parameters and location of viscoelastic links, while considering the effects 

of temperature changes. Experiments are done on a steel plate, with and without viscoelastic link, to validate the 

developed methodology.  
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1  Introduction 

Being dynamic in nature, vibration may be a common occurrence for mechanical systems. In some cases, 

vibration can lead to reduced lifespan, compromised safety, and discomfort upon use of mechanical components. 

When caused by mechanical instability in systems with low damping factor, vibration can be controlled by the 

addition of links, a type of damper defined by the connection of a structure to the ground by a device with a layer 

of viscoelastic material. 

Viscoelastic materials have both viscous and elastic properties, and can be an interesting option to introduce 

damping on a system, as they are cheap and can be cut into a variety of shapes and sizes. In comparison to hydraulic 

dampers, a more commonly used type of damper, viscoelastic links can use less space and be of easier placement. 

However, properties of viscoelastic materials vary, between other factors, with temperature, and shifts in room 

temperature can lead to non-optimal behavior. Thus, temperature effects have to be taken into consideration during 

design. 

The GVIBS group, which the authors are part of, has been developing over the past decades a methodology 

for optimal design of dynamical neutralizers, some of which employ viscoelastic materials. This methodology has 

been implemented in a proprietary software called LAVIBS_ND. 

This work expands the GVIBS group methodology to viscoelastic links, while also updating models to allow 

temperature influence to be considered during design. The software LAVIBS_ND is updated and new graphical 

visualization tools are introduced to manage temperature changes. 
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2  Mathematical model 

2.1 Viscoelastic material 

The properties viscoelastic materials vary, mainly, in respect to frequency and temperature. Classical 

mathematical models for viscoelastic materials use an association of purely elastic springs and purely viscous 

dampers in parallel (Kelvin-Voigt) or in series (Maxwell). Some models, as the generalized Maxwell model, utilize 

as many springs and dampers as necessary to properly model the viscoelastic material behavior.  

By introducing the concept of fractional derivative, it is possible to achieve a precise model without the need 

of considering as many springs and dampers (Ciniello, Bavastri and Pereira [1]). Using the four parameters 

fractional derivative Zener model, the complex shear modulus is given by 

 𝐺𝑐(𝛺𝑟𝑒𝑑) =
𝐺0+𝐺∞𝑏1(𝑖𝛺𝑟𝑒𝑑)𝛽

1+𝑏1(𝑖𝛺𝑟𝑒𝑑)𝛽
,  (1) 

where G0 is the asymptotic value for very low frequencies, and G∞  the asymptotic value for very high frequencies. 

b1 is a complementary parameter, and β represents the fractional derivative value, being lower than 1. Ωred is 

called reduced frequency, that can be defined as: 

 𝛺𝑟𝑒𝑑 = 𝛼𝑇(𝑇)Ω.   (2) 

In the equation, Ω represents frequency, and αT(T) is the shift factor, which will be set by the William-

Landel-Ferry equation: 

 𝑙𝑜𝑔10 𝛼𝑇(𝑇) =
−𝜃1(𝑇−𝑇0)

𝜃2+𝑇−𝑇0
,   (3) 

with T0 being a reference temperature and T the temperature at which the viscoelastic material operates in, both in 

Kelvin. θ1 and θ2 are additional parameters that vary according to the material. 

The viscoelastic material dimensions also influence its behavior, as described by Nashif, Jones, and 

Henderson [2], in the equation 

 𝐾𝑐(𝛺𝑟𝑒𝑑) = 𝜗𝐺𝑐(𝛺𝑟𝑒𝑑) 𝑜𝑟 𝐾𝑐(𝛺𝑟𝑒𝑑) = 𝜗𝐸𝑐(𝛺𝑟𝑒𝑑), (4) 

where ϑ is a geometric factor.  

For pure shear, ϑ is set as the ratio of the sheared area and the length of the material. For pure compression, 

ϑ is three times the ratio between the compressed and the material height. 

2.2 System with multiple degrees of freedom 

The vibrating system, or primary system, to be controlled in this paper is modelled as a multiple (n) degree 

of freedom system, with time invariant parameters, written as 

 𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑞(𝑡) = 𝑓(𝑡).   (5) 

M, C, and K represent the mass, damping, and stiffness matrix, respectively, with size n x n. f(t) is a force exciting 

the primary system, and q(t) the generalized coordinates of the primary system. 

In order to simplify the resolution of eq. (5) a coordinate transformation to modal space can be used. This 

transformation can be done through use of the eigenvalues and eigenvectors, derived from 

 𝐾𝜙𝑗 = 𝜆𝑗𝑀𝜙𝑗.   (6) 

In eq. (6), j varies from 1 to n degrees of freedom, with ϕj representing the jth eigenvector, and  λj the jth 

eigenvalue associated with the jth eigenvector. The proportional damping model, which assumes the damping 

matrix as a linear combination of the stiffness and mass matrixes, is considered. For this model, 

 𝜆𝑗 = 𝛺𝑗
2,   (7) 

with Ωj being the jth natural frequency. 

Not all eigenvectors are needed to correctly represent the system. Therefore, only n̂ eigenvectors will be 

considered, with n̂ ≪ n. The eigenvectors are normalized by the modal mass matrix. The orthonormalized 
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eigenvectors are defined by ψj. The orthonormalized modal matrix (𝛹) and the spectral matrix (𝛬) are set as 

  𝛹 = [𝜓1, 𝜓2, … , 𝜓�̂�] 𝑎𝑛𝑑 𝛬 = 𝑑𝑖𝑎𝑔(𝛺𝑗
2),     (8) 

and are n x n in size. 

A Fourier transform is applied on eq. (5), changing the equation from time domain to frequency domain, 

therefore resulting in: 

 [−𝛺2𝑀 + 𝑖𝛺𝐶 + 𝐾]𝑄(𝛺) = 𝐹(𝛺).   (9) 

Equation (9) is then transformed to the modal space by pre-multiplying both sides by ΨT and establishing  

  𝑄(𝛺) =  𝛹𝑃(𝛺) 𝑎𝑛𝑑 𝑁(𝛺) =  𝛹𝑇𝐹(𝛺).     (10) 

Thus, eq. 9 becomes 

  [−𝛺2𝐼 + 𝑖𝛺𝑑𝑖𝑎𝑔(2𝜉𝑟𝛺𝑟) + 𝑑𝑖𝑎𝑔(𝛺𝑟
2)]𝑃(𝛺) = 𝑁(𝛺),     (11) 

where r goes from 1 to n̂, and ξr the damping factor related to the rth mode, which can be determined 

experimentally. 

Receptance (α(Ω)) is a frequency response function (FRF) that establishes a relationship between the system 

response displacement and the excitation force. Mathematically, it can be defined as 

  𝛼(𝛺) = 𝛹[−𝛺2𝐼 + 𝑖𝛺𝑑𝑖𝑎𝑔(2𝜉𝑟𝛺𝑟) + 𝑑𝑖𝑎𝑔(𝛺𝑟
2)]

−1
𝛹𝑇 .     (12) 

For an excitation force applied in the position k and being measure on position s, eq. (12) becomes 

  𝛼𝑘𝑠(𝛺) =  ∑
𝛹𝑘𝑟𝛹𝑠𝑟

−𝛺2+𝑖2𝜉𝑟𝛺𝑟𝛺+ 𝛺𝑟
2 .�̂�

𝑟=1      (13) 

Similarly, other FRFs can be defined, as inertance, that relates excitation force to system response 

acceleration. 

2.3 Adding dampers to the system 

Similar to what has been done by Bavastri [3] with neutralizers, a viscoelastic link can be modeled by a 

stiffness element that varies with frequency, as shown in eq. (4). Hence, if p links are added into the system, eq. 

(9) becomes 

 [−𝛺2𝑀 + 𝑖𝛺𝐶 + 𝐾 + 𝐾𝑑(𝛺)]𝑄(𝛺) = 𝐹(𝛺).   (14) 

with  

 𝐾𝑑(𝛺) =

[
 
 
 
 
0 0

𝑘𝑐1(𝛺)

⋱

𝑘𝑐𝑝(𝛺)

0 0 ]
 
 
 
 

.   (15) 

 The links stiffness matrix Kd(Ω) can be cast to the modal space and, with this model, eq. (12) turns into 

  𝛼(𝛺) = 𝛹[−𝛺2𝐼 + 𝑖𝛺𝑑𝑖𝑎𝑔(2𝜉𝑟𝛺𝑟) + 𝑑𝑖𝑎𝑔(𝛺𝑟
2) − 𝐾𝑎(𝛺) ]

−1
𝛹𝑇 , 𝑤ℎ𝑒𝑟𝑒 𝐾𝑎 = 𝛹𝑇𝐾𝑑(𝛺)𝛹    (16) 

2.4 Link optimization 

The goal of the optimization is to find the ideal link dimensions and placement position within the structure 

to reduce vibration within a certain bandwidth. For that purpose, the objective function is defined as 

  𝑓𝑜𝑏𝑗(𝑥) = ‖ 𝑚𝑎𝑥
𝛺𝑖𝑛𝑓<𝛺<𝛺𝑠𝑢𝑝

�̂�(𝛺, 𝑥)‖
2

, (17) 

respecting 

 𝛺𝑖𝑛𝑓 < 𝛺 < 𝛺𝑠𝑢𝑝 𝑎𝑛𝑑  𝑥𝑖𝑛𝑓 < 𝑥 < 𝑥𝑠𝑢𝑝. (18) 
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𝛺𝑖𝑛𝑓, 𝛺𝑠𝑢𝑝, 𝑥𝑖𝑛𝑓 , 𝑥𝑠𝑢𝑝 are the lowers and upper boundaries for the frequency and design vector. The design 

vector is composed of the modal positions where the links will be inserted as well as the geometric factor for each 

link. Genetic algorithm is used as the optimization method.  

The optimization is done by the proprietary software LAVIBS_ND. The software implements a Fortran code, 

to run the optimization method, and a Java application, which displays the results in a graphical way.  

3  Methodology and Results 

In this paper, vibration control is done on a steel plate with dimensions 543mm x 351mm 10.5mm, as shown 

in Fig. Figure 1 

 

Figure 1. Steel plate used on experiments 

The goal of the experiments is to validate if the FRFs match the ones predicted by the software LAVIBS_ND 

after optimization. The measurement was done by exciting the steel plate with an impact hammer, model 086C04, 

and the response was measure with a piezoelectric accelerometer 352C68, both manufactured by PCB    

PIEZOTRONICS. The data is gathered by a Photon 2 analyzer, made by LDS  DRACTON, and processed by the 

software RT Pro Photon. The measurements were performed with the plate hanged vertically by a thin nylon line, 

to minimize altering the system behavior. The range of frequencies measured was from 0 to 657Hz with a 

discretization of 1024 points.  

3.1 Structure model 

In order to acquire modal parameters, a simulation is performed with software ANSYS, version 17.0, using 

504 elements (20 node hexahedral). The steel Young modulus is assumed 200GPa, the Poisson coefficient 0.3 and 

density 7900 Kg/m³.  

The nylon line holding the plate vertically is assumed to have little impact in the system behavior. Thus, for 

the boundary conditions, all 4 edges of the plate were considered free. 

As the modal damping factor can be difficult to model, it was calibrated to match approximately the peaks 

of the experimental tests. The excitation and measurement points were chosen to avoid vibration nodes within the 

measured frequency range and are displayed on Fig. Figure 2. 
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Figure 2. Point of response measurement (A) and point of excitation (B) 

The frequency range for vibration control was set between 300Hz and 600Hz, due to the high number of 

modes within that range. Inertance was simulated within this frequency range and the results compared to the 

measured values for the steel plate, shown on Fig. Figure 3. 

 

Figure 3. Measured inertance(blue) vs model inertance(orange) 

The differences between the model and the measurement are attributed to poor manufacture quality of the 

plate and uncertainties over the material property. Table 1 displays the natural frequencies from the model and 

measurement, as well as the relative error. 

 

 



Optimal design of viscoelastic links considering temperature influence in vibration control 

CILAMCE-PANACM-2021 

Proceedings of the joint XLII Ibero-Latin-American Congress on Computational Methods in Engineering and 

III Pan-American Congress on Computational Mechanics, ABMEC-IACM  
Rio de Janeiro, Brazil, November 9-12, 2021 

Table 1. Natural frequencies measured vs modelled 

Mode Measured natural 

frequency (Hz) 

Model natural frequency 

(Hz) 

Relative error (%) 

3rd 407.2 404.9 0.56 

4th 465.8 456.2 2.06 

5th 486.3 500.8 2.98 

6th 594.7 595.5 0.14 

 

 

The relative error is relatively low, below 3% for all modes. For this reason, the modal parameters calibrated 

will be used on the links optimal design. 

3.2 Links design 

The links geometric factor and position of placement in the primary structure are optimized using the 

LAVIBS_ND software. For the optimization technique, a genetic algorithm is utilized. The algorithm considers 

100 generations, with 100 individuals each, a crossover rate of 50% and 7% mutation rate. The range to be 

controlled is between 300Hz and 600Hz, with a discretization of 800 points. 

The viscoelastic material used for the links was the elastomer BT 806/55, with properties described by Silva 

[4]. The optimization considered 2 links. The boundaries for the links geometric value are set as 0.1 at minimum 

and 2 at maximum. Those boundaries are set based on geometric limits for the construction of links. For the 

position optimization no boundaries were set; the links can be placed on any modal node of the mesh. The 

optimization was performed for a temperature of 288K. 

The optimization results lead to the first link(A) to have a geometric factor of 0.58 and the second link(B) to 

have a geometric factor of 2. The optimal placement can be seen below, on Fig 4. 

 

Figure 4. optimized position of the links  

Figure 5. displays the optimization results on the inertance curves. The graph also displays two additional 

curves showing the links behavior under different temperatures, 273K and 303K. These values are chosen to reflect 

normal seasonal temperature changes. 
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Figure 5. Inertance of the primary system (red) vs composite system on temperatures 288K (blue), 303K 

(yellow), and 273K (black) 

As displayed, there was a significant reduction throughout the entire frequency range. The reduction on the 

inertance is of at least 20db on all natural frequencies and an overall reduction in the vibration levels is perceived. 

Temperature changes can cause a slight underperformance or be beneficial depending on the frequency range 

observed. 

4  Conclusions 

The optimal design of links proposed has shown great theoretical results. Experiments are still going to be 

conducted to validate the methodology developed, but significant reduction on vibration levels are expected. 

Temperature variation can theoretically lead to small changes on the effectiveness of control, at around 10db for 

the case in study.  

Further works can apply the methodology developed on this paper to more complex structures and to different 

types of control devices. 
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