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Abstract. Parallel manipulators present better dynamic performance than serial robots in terms of positioning
accuracy and operating speeds. However, it is complex to develop control strategies for parallel robots due to the
difficulty of obtaining the end-effector’s pose given the position of the joints. This task can be even more com-
plicated if the robot is lightweight and the links are flexible. A model of the system’s dynamics can be used in
the design of model-based controllers and may be essential to improve the performance of flexible manipulators
subject to undesired vibration. In this paper, we developed in a multibody dynamics environment a finite element
model of the parallel manipulator 3RRR. The current setup has thin and light links connecting the revolute joints
of each one of the three kinematic chains. To validate the multibody model implemented, we performed an exper-
imental modal test with accelerometers placed on the links and a roving impact hammer. Modal parameters such
as the natural frequencies of the numerical model and experimental setup were compared for different poses of the
manipulator.

Keywords: Multibody Dynamics, Experimental Modal Analysis

1 Introduction

The demand for cost-efficiency design processes enforces minimal prototyping, relying on numerical simula-
tion for evaluating the design requirements. Moreover, reliable, accurate, and time-efficient numerical models can
be used for control design, predicting maintenance, estimating states, and assessing uncertainties. The design of
a mechatronic system is a complex and multidisciplinary task since it merges different fields such as mechanics,
electronics, control, piezoelectricity, among others [1]. Therefore, the numerical tools must allow the designer to
work with diverse subsystems, enabling integration throughout the design process and providing decision-making
tools.

Despite this necessity, there is a gap between the software used to evaluate mechanical structures to design
control strategies. On the one hand, mechanical engineers employ finite-element and multibody packages to assess
the system dynamics. On the other hand, control engineers use input-output dynamic modeling representation.
Therefore, the designer should reduce CAD-based models to low-order ones that can be used in control design
schemes. A Global Modal Parametrization has been proposed by [2] aiming the extraction of compact ordinary
differential equations (ODEs) in closed-form. This methodology has been exploited by [3] for deriving suitable
models of a flexible parallel manipulator.

Flexible manipulators can be more energy-efficient and may offer higher dynamic performance. However,
these manipulators are complex systems, and their design presents the same issues related to the design of any
mechatronic system. In addition, the designer should consider the links’ deformation of this kind of manipulator
when evaluating its performance or designing its control [4]. Figure 1 illustrates a typical control scheme for a
flexible manipulator. Usually, a large amount of data has to be acquired, evaluated, and treated. This data can be
fed back to the control law. The control law scheme may use terms from the kinematic and dynamic models.

The complexity of controlling a parallel manipulator is notably higher due to the lack of a direct measurement
of the pose (position and orientation) of the manipulator’s end-effector [5]. This complexity may be more critical
if the manipulators under study are subject to vibrations due to the flexibility of their components. One alternative
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for designing Cartesian control strategies, which require the measurement of the end-effector pose, is the use of
vision-based techniques and image processing algorithms [6, 7].

The present manuscript aims to contribute to the field of flexible manipulators by modeling a parallel manipu-
lator with flexible links. This task is of utmost importance for the control of such a machine. Moreover, challenges
as the configuration-dependent dynamics and the modeling procedure are discussed. The finite element model is
validated with experimental data. And, a reduced model is derived for control purposes.
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Figure 1. Control scheme for a flexible manipulator

2 Finite Element Model

In structural mechanics problems, the displacements and deformations of a structure due to force loads and
support conditions are investigated. In most cases, exact solutions for these boundary value problems are not
available. The Finite Element (FE) method provides an approximate solution by substituting the original complex
problem, usually a partial differential equation, by a system of ordinary differential equations. After dividing the
structure’s geometry into several smaller pieces, called elements, the mass and stiffness of each element are derived
by physical principles, such as equilibrium conditions and variational principles. Considering that the displacement
field within each element is piecewise continuous, the displacement of the nodes located in the boundary of the
elements is not known but can be approximated by polynomial functions. The FE model can be described by

M q̈ + K q = bf u,

y = cy q̈,
(1)

where M ∈ Rn×n and K ∈ Rn×n are the mass and stiffness matrices, respectively, and n is the number of degrees
of freedom in the FE model, described by the nodal displacement vector q ∈ Rn. The input vector u ∈ Rnu

represents the forces applied in the nu actuated nodes defined in the Boolean matrix bf ∈ Rn×nu . The output
vector y ∈ Rny denotes the acceleration of the ny measured nodes described by the Boolean matrix cy ∈ Rny×n.
The boundary conditions of the problem are assumed to have already been incorporated into this model.

To solve this system of ordinary differential equations and obtain the nodal displacement vector, we can first
rewrite this problem in modal coordinates instead of directly integrating it. Transforming the displacement vector
by q = Φ η, we can rewrite eq. (1) as

ΦT M Φ η̈ + ΦT K Φ η = ΦT bf u,

y = cy Φ η̈,
(2)

where Φ ∈ Rn×r is the modal matrix and η ∈ Rr is the modal coordinates vector. The modal matrix contains only
the first r mode shapes of the structure, as Φ =

[
φ1 φ2 . . . φr

]
, obtained by solving the eigenvalue problem

(K− ω2M)Φ = 0. With r � n, this transformation significantly reduces the order of the problem [8]. Also, the
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orthogonality conditions between the mode shapes imply that ΦT M Φ = diag(µi) and ΦT K Φ = diag(µi ω
2
i ),

where µ is the modal mass and ω is the natural frequency. Classical damping can be added to the model as
a diagonal matrix D̄ proportional to the velocity term and defined by D̄ = diag(2 ξi µi ωi), where ξ is the
modal fraction of critical damping. Considering zero initial conditions, the FE model can be rewritten in modal
coordinates as

η̈ + 2 ξ Ω η̇ + Ω2 η = µ−1 ΦT bf u,

y = cy Φ (−Ω2 η − 2 ξ Ω η̇ + µ−1 ΦT bf u),
(3)

where µ = diag(µi), Ω = diag(ωi) and ξ = diag(ξi), or in the state-space form:

η̇
η̈

 =

 0 I

−Ω2 −2 ξ Ω

η
η̇

+

 0

µ−1 ΦT bf

u,

y = cy Φ
[
−Ω2 −2 ξ Ω

]η
η̇

+
[
cy Φ µ−1 ΦT bf

]
u.

(4)

3 Parallel Manipulator

The robotic manipulator studied in this project is the parallel manipulator 3RRR, illustrated in Fig. 2, which
has three revolute joints (RRR) in each of the three (3) kinematic chains. Only the first revolute joints of each chain
are active as their motion are driven by an external torque. The pose of its end-effector X = [x, y, α]T , described
by the displacement in the x and y directions and the angular position α, is used to define the manipulator’s
configuration. In the manipulator’s prototype, seen in Fig. 2(b), three brushless Maxon EC60 flat motors with
Maxon EPOS2 50/5 controllers are used in the active joints [9]. The stress and acceleration of some points of
the links are measured by strain gauges and accelerometers placed on them. Moreover, the end-effector’s pose is
estimated in real-time by a computer vision algorithm [7].

x
-y

-z

(a) (b)

Figure 2. 3RRR parallel manipulator: CAD model (a) and prototype (b)

The components were designed and assembled using the computer-aided design (CAD) software SolidWorks
2018. Based on this CAD assembly, a numerical model of the parallel manipulator 3RRR was implemented using
the FE method in the Multibody Dynamics (MBD) environment of the Comsol Multiphysics 5.5 software. The
revolute joints were modeled using the hinge joint available in this MBD package, which constrains the motion of
two components to rotate along the joint axis.

To reduce the number of degrees of freedom in this model, we assumed that only the links and end-effector
are flexible without causing a significant decrease in the model’s accuracy. Moreover, we considered that the
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components have a linear elastic behavior and can be modeled as an isotropic solid. The material of the end-
effector and joints is aluminum, and their material properties are listed in Table 1. The properties of the links
had to be experimentally estimated to include the mass of the strain gauges, accelerometers, and cables. All the
sensors placed on the links were responsible for a considerable increase in the links’ weight since these steel SAE
1040 links are thin (0.70 mm × 35 mm × 300 mm) and very light (0.06 kg). Since most cables and sensors are
located in the links closer to the motors, the final weight of the first links of each kinematic chain is greater than
the weight of the second links, which are closer to the end-effector. The mesh created has tetrahedral elements
with a displacement field approximated by a quadratic function and n = 13989 degrees of freedom.

Table 1. Material properties of the 3RRR manipulator’s components

Components Density (kg/m3) Poisson’s ratio Young’s modulus (GPa)

First links 12500 0.3 200
Second links 9500 0.3 220
End-effector

2800 0.33 70
and joints

In the Comsol environment, we performed an eigenfrequency study to analyze the manipulator’s mode shapes,
frequency bandwidth, and the most appropriate sensor and excitation locations. The displacement of the active
joints was constrained in this test to simulate a stationary configuration of the manipulator. For the end-effector’s
pose X = [-5 cm, -5 cm, 0◦]T , Fig. 3 illustrates six modes shapes of the manipulator and the corresponding natural
frequencies. The first three modal displacements are rigid body modes, which coincides with the three degrees of
freedom that the manipulator presents. The remaining mode shapes correspond to the (out-of-plane) bending of
the flexible links. Due to the similarities between all the links, modes 1-3, and 4-6 are closely spaced in frequency,
as they present almost repeated natural frequencies. Also, not every component of this structure can be excited by
these modes. An experimental modal test should be carried out to validate this FE model taking these difficulties
into account. Finally, we exported the matrices M and K and vectors bf and cy to Matlab 2015a, together with
additional information about the coordinates and constraints of the nodes. The state-space formulation described
in the last section is used to investigate further the model’s frequency response.

4 Experimental Modal Analysis

Experimental data on the manipulator’s prototype was used to validate the FE model developed. A modal
analysis was performed to obtain the prototype’s dynamic properties with three single-axis accelerometers PCB
352A24 and a roving impact hammer with a force transducer PCB 208C02. We selected the ends and middle
points of each link as the sensors and excitation locations. A multiple-input multiple-output (MIMO) modal
test is recommended to detect closely spaced modes. For each sensor/transducer configuration, the data from
five impacts were acquired and averaged to obtain the manipulator’s frequency response function (FRF) with a
frequency bandwidth of 250 Hz and resolution of 0.3125 Hz. After inspecting all acquired data, we selected the
configurations that provided the best responses in low frequency to form the FRF matrix H(jω) ∈ Rnu×ny .

To estimate the modal parameters of this experimental data, we applied the complex mode indicator function
(CMIF) based on the singular value decomposition of the FRF matrix [10, 11]. At each frequency ω, CMIF ∈
Rny×ny is defined as

H(jω) = U(jω) S(jω) V∗(jω),

CMIF(jω) = S(jω)T S(jω),
(5)

where the matrices U ∈ Rnu×nu and V∗ ∈ Rny×ny contain the left and right singular vectors, respectively, and
S ∈ Rnu×ny is a diagonal matrix with singular values. The symbol ∗ denotes the complex conjugate matrix.

Since multiple excitation and measurement points are available, CMIF can be used to identify the natural
frequencies of even closely spaced modes. Figure 4 illustrates the CMIF values obtained for the end-effector pose
X = [-5 cm, -5 cm, 0◦]T as a function of frequency. The frequencies at the peaks of the CMIF curve with the
largest singular values (in blue) represent the system’s natural frequencies. However, not all peaks in this curve
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Figure 3. First six modes shapes and corresponding natural frequencies of the 3RRR manipulator’s FE model, for
the end-effector’s pose X = [-5 cm, -5 cm, 0◦]T

indicate a system mode as they may be caused by noise or errors during the modal analysis and must be carefully
selected. Multiple modes in the same frequency range can be detected if the remaining CMIF curves present peaks
at the same frequency as the first one. In addition to the CMIF values, Figure 4 shows the selected peaks, and many
peaks occur at the same frequency for all three CMIF curves as predicted by the FE model.
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Figure 4. Experimental CMIF values in function of frequency and selected peaks indicated by circles, for the
end-effector’s pose X = [-5 cm, -5 cm, 0◦]T
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5 Results and Discussion

To validate the numerical model developed, we compared the natural frequencies of the FE model with the
experimental values determined by the CMIF curves. Table 2 illustrates the natural frequencies of the first ten
modes of the manipulator and the relative error between the numerical and experimental values for two differ-
ent manipulator’s poses. Although there is a considerable relative error of 11% for some rigid-body modes, the
frequency resolution used in the modal analysis was not small enough to adequately capture the manipulator’s
dynamics at such a low frequency. For both manipulator’s poses, the modal analysis missed the tenth mode, which
corresponds to the in-plane bending of the links. As only single-axis accelerometers were available, the vertical
motion of this mode shape was not tracked by the experiments. Using the CMIF values in function of frequency
was a successful estimation tool of the natural frequencies of this manipulator, as all closely spaced bending modes
were detected in this frequency range. With an average error of 5.3% and 7.8% for poses X = [-5 cm, -5 cm, 0◦]T

and X = [+5 cm, +5 cm, 0◦]T , respectively, there is a good correlation between the numerical and experimental
data in terms of natural frequency.

Table 2. Comparison between the natural frequencies of the FE model and the experimental modal analysis (EMA)
for two manipulator’s poses

X = [-5 cm, -5 cm, 0◦]T X = [+5 cm, +5 cm, 0◦]T

Mode FE (Hz) EMA (Hz) Relative Error FE (Hz) EMA (Hz) Relative Error

1 1.40 1.56 11.43% 1.39 1.36 2.16%
2 1.69 1.56 7.69% 1.77 1.56 11.86%
3 1.91 1.87 2.09% 1.83 1.67 8.74%
4 13.35 13.44 0.67% 13.52 13.44 0.59%
5 13.98 13.75 1.65% 13.82 14.38 4.05%
6 14.90 14.06 5.64% 14.76 15.00 1.63%
7 20.13 18.44 8.40% 19.49 16.25 16.62%
8 20.25 19.06 5.88% 19.66 16.88 14.14%
9 20.61 19.69 4.46% 20.03 17.81 11.08%
10 45.66 - - 46.16 - -

Considering a force input at the middle of the first link and the acceleration of the end of the second link as
output, Fig. 5 illustrates the frequency response of this system obtained by the modal analysis. The experimen-
tal FRF confirms that the manipulator’s mode shapes are not well separated and present relatively heavy damping.
Damped responses are typical in robotic manipulators due to the friction between the joints’ components. Nonethe-
less, estimating the modal parameters of such a system is a difficult task. Moreover, Fig. 5 shows the numerical
FRF obtained by the FE model in the state-space form, with r = 350 modes. Both responses have a good agree-
ment, especially below 30 Hz, which includes the first nine mode shapes. Measurement noise and the difficulty in
defining the correct location and direction that the force is applied or the acceleration is measured in the FE model
may also contribute to the discrepancies seen in this graph.

6 Conclusions

In a multibody dynamics software based on the finite element method, we obtained a numerical model of
the 3RRR manipulator, a lightweight parallel manipulator with flexible links. Since this dynamic model may be
essential to improve the performance of the prototype subject to unwanted vibration, we evaluated the validity of
this modeling technique by comparing the frequency responses of the model and the experimental modal analysis.
With closely spaced and highly damped modes, the complex mode indicator function was used to estimate the
system’s natural frequencies from the experimental data. The numerical model provided a good approximation of
the prototype’s dynamics regarding frequency response and natural frequency, which presented an average relative
error lower than 8% for different manipulator configurations. The validated dynamic model can be used in the
control design after applying a suitable model order reduction method.
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Figure 5. Comparison between the FE and experimental FRFs, considering a force input at the middle of the first
link and the acceleration of the end of the second link as output, for the end-effector’s pose X = [-5cm, -5cm, 0◦]T
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