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Abstract. In the present work, an investigation is carried out on the use of Graphics Processing Units (GPUs) as 
a powerful tool to accelerate Computational Fluid Dynamics (CFD) simulations and problems of interest for CWE 
(Computational Wind Engineering). With this intent, different code versions (OpenMP and CUDA-Fortran) are 
utilized to compare response accuracy and computational performance obtained using an explicit two-step Taylor-
Galerkin scheme, with turbulence modeling via Large Eddy Simulation (LES), where the flow equations are 
discretized in the context of the Finite Element Method (FEM) considering eight-node hexahedral elements. From 
the 3D simulation investigated here, it is observed that the use of GPUs leads to high levels of computational 
processing speed, generating little, if any, loss of accuracy in the numerical results, and still allows increasing the 
refinement level of computational meshes and time increment without increasing the simulation time compared to 
other approaches. 
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1  Introduction 

The use of computational codes employing numerical models to study fluid flow and its interaction with 
immersed bodies is today a widespread form of analysis of scientific and engineering applications (Blocken, [1]). 
CFD allows detailed analysis of classical fluid mechanics and CWE problems, however it presents great challenges 
when it comes to complex flow modeling (Zienkiewicz, [2]), turbulence analysis (Murakami et al, [3]) and the 
computational processing capacity required (Braun and Awruch, [4]). In its early days, the CFD and CWE models 
had a low degree of refinement, given the available hardware technology, however with the constant improvements 
observed in computational processing capability, numerical procedures for CFD and CWE have been successfully 
employed in many areas, including the simulation of the wind action on structures and fluid-structure interaction 
(see Löhner [5]). 

CFD simulations of classical and CWE problems have been performed currently with much higher time and 
space refinement levels, requiring large amounts of computational power owing to the large simulation time. 
Alminhana et al. [6, 7], for instance, presented a numerical investigation on aerodynamic analysis of the CAARC 
(Commonwealth Advisory Aeronautical Research Council) standard tall building model employing the FEM and 
an explicit scheme. Simulations were carried out using OpenMP (Open Multi-Processing) parallelization 
techniques, where some weeks of computational processing were required, about 3 months. In this sense, task 
parallelization has become a prerequisite for numerical codes when large-scale simulations are envisaged. Through 
the multiprocessing approach, computational algorithms have evolved both in terms of performance and form of 
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writing. In recent decades, GPUs have been acquiring, with each new generation, greater processing capacity and 
memory, and have come to rely on hundreds of logical cores, thus proving to be an attractive option for HPC 
(High-Performance Computing) applications (see Lee et al., [8]). The advent of the CUDA (Nvidia, [9]) platform 
made it possible to use common programming languages of scientific community for the creation of numerical 
codes, such as C and Fortran, facilitating the use of GPUs for computer simulation. Regarding the CWE 
applications, the use of GPUs-CUDA enables the investigation of problems with high Reynolds number (Re) and 
high mesh resolution in a shorter time. 

The use of a hybrid approach, such as CUDA (Compute Unified Device Architecture), can offer high 
processing performance for several applications of scientific interest. At this point, for research fields such as CFD 
and CWE, the use of CUDA-GPU can provide a significant improvement in the resolution of problems investigated 
in these investigation areas. To exemplify the potential of CUDA-GPU parallelization for CFD applications, 
Senocak et al. [10] presented a CFD simulation of a cavity flow, where acceleration ratios up to 13x were obtained 
in terms of processing time by using CUDA-GPU, when compared with approaches via CPUs. Phillips et al. [11] 
obtained results on computational performance comparing the CPU and GPU approaches for the simulation of 
compressible flows. The predictions presented by the authors showed acceleration ratios from 4x to 57x. Thibault 
and Senocak [12] presented an attempt to simulate urban wind flow and Lai et al. [13] analyzed the computational 
performance of a numerical code based on CUDA-GPU for solving jet and supersonic flow problems, where 
acceleration ratios from 45x to 50x were obtained with respect to approaches using CPU. 

In the present work, the computational performance and accuracy of a numerical model for simulation of 
CFD and CWE applications are investigated, where code versions using CPU-OpenMP and CUDA-GPU are 
analyzed comparatively. For the problem investigated here, the numerical model presented by Braun and Awruch 
[4] is adopted, which is based on the explicit two-step Taylor-Galerkin scheme and LES turbulence model. The 
FEM is utilized for spatial discretization, where eight-node hexahedral elements with one-point quadrature are 
used. 

2  Numerical model 

The explicit two-step Taylor-Galerkin approach is used in this investigation for time and spatial discretizations 
of the flow fundamental equations (see Alminhana et al. [6]). In the numerical model, the Lax-Wendroff procedure 
is applied to the flow equations adopting second-order Taylor series for time approximations. In addition, the method 
proposed by Chorin [14] is adopted, where the fundamental equations are resolved using a two-step scheme for each 
time step. The resulting numerical algorithm for the flow simulation is presented below: 

 

(I) Obtain a first approximation for the velocity field at intermediate time step (
1 2n

iv ) solving the momentum 
equations: 
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where  t  must be previously obtained. 

(II) Apply the boundary conditions on the velocity field 
1 2n

iv . 

(III) Obtain the pressure field at the intermediate point of the time step, that is 
1 2np , solving the mass conservation 

equation: 
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(IV) Apply the boundary condition specified on the pressure field 
1 2np . 

(V) Determine the pressure increment: 
1 2 1 2   n n np p p (3) 

(VI) Obtain the corrected velocity field by employing the following expression: 
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(VII) Apply the boundary conditions specified on the corrected velocity field 
1 2n

iv . 

(VIII) Correct the velocity field using 
1 1 2   n n n

i i iv v v , where: 
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(IX) Apply the boundary conditions specified on the updated velocity field 
1n

iv . 

(X) Correct the pressure field using 
1 1 2   n n np p p , where: 

1 2

1 2 2



               

n

jn
j

j j

vp
p t r c

x x
(6) 

(XI) Apply the boundary condition specified on the updated pressure field 
1np . 

 
The final form of the numerical model is obtained applying the Bubnov-Galerkin’s weighted residual method 

in the FEM context on the discrete forms of the flow fundamental equations, considering the weak form of them. 
Eight-node hexahedral elements are adopted for spatial approximations and using one-point quadrature for the 
evaluation of element matrices. Christon [15] method for hourglass control is adopted here to prevent spurious modes. 
The FEM system of equations in matrix notation is presented below: 
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The vector of flow variables U is obtained using FEM approximations for velocity and pressure fields as follows: 
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where Φ contains finite element interpolation functions associated with the eight-node hexahedral element. 

 The mass matrix M  is referred to as selective mass matrix, see Kawahara and Hirano [7], which is defined as 
follows: 

 1DM M Me e   (13) 

where e is the selective mass parameter, with values defined within the interval [0,1]. In this work, e is set to 0.9 for 
all cases analyzed.  

The element matrices presented in the FEM approach used in the present work are evaluated using analytical 
integration, considering one-point quadrature. For additional details about the FEM approach and aerodynamic 
coefficients calculation, see Braun and Awruch [4]. 

Notice that the system of flow discretized equations utilized here presents an explicit nature, which facilitates 
the use of parallelization techniques, such as OpenMP, MPI (Message Passing Interface) and CUDA-GPU. In the 
following section, performance results are presented considering different code implementation approaches of the 
numerical model proposed in this work, where OpenMP and CUDA-Fortran versions are analyzed comparatively. 
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3  Results & Discussion 

3.1 Hardware configuration and initial considerations 

The present investigation is carried out considering the clusters Gauss and Fermi provided by CESUP (Centro 
Nacional de Supercomputação) / UFRGS (Universidade Federal do Rio Grande do Sul). The main computational 
characteristics associated with the hardware utilized here are presented in Tab. 1 (see also https://cesup.ufrgs.br). 

Table 1 – Hardware Setup 

Machine 
CPU GPU 

Theoretical performance 
Processor N° of Cores Device N° of Cores

Gauss AMD Opteron 6176 / 6238 24 - - 24 Tflops (SP) 
Fermi Intel Xeon Silver 4116 24 Pascal P100 3.584 9.53 Tflops(SP), 4.76 Tflops(DP)

 
The OpenMP code version utilized in this work adopted variables with double precision (DP), while 

simulations with the CUDA-Fortran code version employed variables with single precision (SP) only. Notice that 
the computational performance in GPUs is significantly increased when variables with SP are used (Ruestch and 
Fatica [17]; Thibault and Senocak [12]). 

A CUDA-Fortran code is usually implemented considering code compartments called kernels, which consist 
of blocks of instructions to be interpreted and executed by the device (GPU). In addition to the kernels, the GPU 
needs to receive, depending on the case, data that is initially stored on the host (CPU memory), thus causing the 
exchange of information between host-device and the specification of the type of memory to be used in host (CPU) 
and device (GPU) during the algorithm execution, points that are crucial for the performance of the computational 
code with CUDA resources and demand further study on the approach to be employed to implement the 
computational code, as stated by Ruestch and Fatica [17] and Sanders and Kandrot [18]. 

 

Figure 1 – Task division between host and device in a CFD CUDA-Fortran code 

Considering the points mentioned above, an implementation strategy was adopted for the CUDA-Fortran 
code version such that excessive exchange of information between host and device was avoided, considering that 
this is one of the most important aspects for the computational performance of a code based on parallel processing 
with GPUs. In this sense, the CUDA code version was elaborated considering a main module with CUDA-GPU 
kernels and local subroutines, containing all the operations required by the 2-step TG algorithm (see Section 2). 
Using this approach, the code runs most of the time on the device, after an initial data transfer from the host to the 
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device. Fig. 1 shows a schematic view of the implementation strategy of the numerical algorithm parallelization 
adopted in this work with CUDA-Fortran. 

3.2 CAARC 3D Building Model 

One of the main objectives of Wind Engineering (WE) and CWE is to study the action of the wind on 
structures and effects of fluid-structure interaction. In this sense, Alminhana et al. [7] presented a numerical-
experimental study considering the CAARC standard tall building model subject to turbulent wind flows. Fig. 2 
shows the computational domain and boundary conditions utilized in the present investigation, where snapshots 
of the finite element mesh are also presented. Mesh characteristics and fluid properties adopted here are 
summarized in Tab. 2 and 3. More information on this problem can be found in Alminhana et al. [7]. 
 

CAARC 

Figure 2 – Boundary conditions utilized in the 3D building models 

Table 2 – Finite element mesh characteristics Table 3 – Fluid and flow properties 

Model Nodes Elements Δd,min (cm)
CAARC 4785531 4716000 7.78 

 

V (m/s) 10.0 
Mach 0.17 

μ (N.s/m²) 3.838.10-3 
ρ (kg/m³) 1.0

D (m) 45.0 
 
Alminhana et al. [7] investigated the wind action on the CAARC building model using a finite element model 

based on the explicit two-step Taylor-Galerkin scheme, where LES was employed for turbulence modeling and 
linear hexahedral elements were utilized for spatial discretization (see also Braun and Awruch [4]). The 
corresponding code was implemented using parallelization techniques with OpenMP directives and the 
simulations were run at the CESUP-UFRGS Gauss cluster. The numerical code was validated considering a series 
of aerodynamic analyses where aerodynamic force coefficients were obtained during a physical time interval of 
120 s, with time increments of 2.50x10-4 s, and compared with experimental results in wind tunnel tests. The total 
simulation time using OpenMP parallelization was about 3 months, considering that the wind flow was 
characterized with a Reynolds number Re ~ 1.2x105 s. It is noteworthy that all the variables utilized in that code 
version were declared to be DP. 

Observing the high computational demand required by the present simulation, a CUDA-Fortran code version 
of the numerical algorithm utilized by Alminhana et al. [6; 7] is proposed here to reduce the simulation time. The 
same parameters and FEM mesh model adopted in Alminhana et al. [7] are employed here, while the computational 
resources used in the present simulations correspond to the Fermi setup, as indicated in Tab. 1. 

Fig. 3 shows the drag (CD) and lift (CL) coefficients obtained during the present analysis, where the CUDA-
Fortran code version was utilized. Results obtained here are compared with predictions presented by Alminhana 
et al. [7] using an OpenMP code version. 
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Figure 3 – CD and CL coefficients – CAARC building model 
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Analyzing the results presented in Fig. 3, one can see that the drag coefficient (CD) values obtained with the 
different code versions proposed in this work are relatively close to each other. However, the lift coefficient (CL) 
values present a distinct pattern, which is a result of the different degrees of precision levels adopted by the 
different code versions employed here. Table 4 shows results referring to time-averaged ( DC , LC ) and rms ( ,L rmsC
) values for drag and lift force coefficients, where predictions obtained in this work with a CUDA-Fortran code 
version are compared with results obtained by Alminhana et al. [7] using OpenMP parallelization techniques. 

Table 4 – CAARC building model: aerodynamic force coefficients 

 

The results presented in Tab. 4 indicate that predictions with the CUDA-Fortran code version reproduced 
well the CD values obtained previously with the CPU-OpenMP code version, while the CL,rms values obtained here 
showed an underestimated result. One can observe that simulations with the CUDA-Fortran code version and 
single precision variables require computational meshes with higher refinement levels than those required when 
double precision is adopted. In this sense, a mesh quality study must be carried out carefully to ensure that the 
simulations results lead to predictions closer to the expected, considering the loss of precision by using SP 
variables, as seen in the present investigation. Although the loss of precision is eliminated when double precision 
variables are utilized, this option leads to a significant increase of processing time. Considering the simulation 
time spent by the CUDA-Fortran code version during the present simulation, it is observed that only 2 days were 
necessary to run the numerical analysis, which leads to a speed up of about 30x with respect to the processing time 
obtained by Alminhana et al. [7] using an OpenMP code version. 

4  Conclusions 

In the present work, the wind action on a building model was simulated using a CUDA-Fortran code based 
on the explicit two-step Taylor-Galerkin algorithm for GPU parallel processing. Results demonstrated that 
predictions obtained with a CUDA-Fortran code version and single precision variables reproduced well values 
referring to aerodynamic force coefficients obtained from a previous CPU-OpenMP code version, where double 
precision variables were adopted. It was shown that no significant loss of accuracy was observed for drag 
coefficient predictions obtained here. On the other hand, the lift force values obtained from the OpenMP code 
version were not reproduced accordingly when the CUDA-Fortran code version was considered with single 
precision variables. This indicates that a careful evaluation of mesh quality must be performed to validate 
predictions obtained with GPU parallelization and single precision approach. Nevertheless, if the computational 
mesh is built properly, one can observe that parallel processing with GPU’s can significantly accelerate the 
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computational performance of CFD/CWE simulations, enabling considerably greater refinement levels without 
generating large processing times. Further investigation is needed to optimize the use of GPU resources, mainly 
with respect to local memory. In addition, codes for multi-GPU’s will be also developed to obtain greater speedups. 
Such advances would make it possible to analyze other important wind engineering applications, such as the flow 
effects generated by Tornadoes and Downbursts on buildings and other structures. 
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