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Abstract. The global stability of a flow provides great insight to its behavior in the real world. Small imperfec-
tions in flat surfaces may accelerate the transition to turbulence, which has a great impact on the flow behavior
downstream as well as the overall lift and drag caused by such flow. The literature contains several simulations of
the flow over open cavities – of which gaps are a subset – however, there is no standard treatment for wall tempera-
ture, which is usually either isothermal or adiabatic, whereas the real-world condition is somewhere between both
scenarios. We wish to compare the global stability of both cases to measure the impact the wall temperature mod-
eling has over the overall flow. To achieve this, we will use and in-house developed open-source Direct Numerical
Simulation (DNS) code, coupled with its global stability routine. The simulation is subsonic yet compressible and
the parameters are chosen so that the flow is close to a critical stability condition, so that any differences between
both temperature treatments are maximized. Different temperature boundary conditions to cause the base flow to
settle at different temperatures, which in turn affects the flow density as well as the local Mach number. Our goal is
to better understand the role of surface temperature on flow stability so that we can better compare our simulations,
as well as those found in the literature, to experimental results as well as to real-world scenarios.
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1 Introduction

When designing and analyzing an aerodynamic model, both computational and experimental data may be
used, each with their own intrinsic challenges and advantages. In computational models, it is often possible
to predetermine every variable in the system. On the other hand, experiments in wind tunnels are subject to
external variables, such as environmental conditions, which may influence the outcome. Therefore, it’s important
to understand how each variable may affect the flow’s stability.

In our previous works, we have analyzed the impact of various parameters on the global stability of a com-
pressible flow, namely incoming boundary layer thickness, Mach number and cavity geometry [1, 2]. When the
flow is globally unstable at a small cavity, it may accelerate the transition to turbulence and, hence, drag [3]. In
this paper, we wish to add a new parameter to our search and understand its effect on the flow stability: wall
temperature.

2 Methods

2.1 Governing equations

In this work, the flow is modeled by the compressible Navier-Stokes equations. Five variables are needed to
fully define the flow: density (ρ), internal energy (e) and the three velocity components (u,v,w). All other flow
variables, such as pressure and temperature, can be computed as a function of those five.

Two types of temperature boundary conditions were defined in this study. An isothermal condition, where
the wall temperature is fixed at a certain predetermined value; and an adiabatic condition, where wall temperature
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depends on the flow, such that no thermal energy transfer happens between the wall and the flow, this is done by
forcing the wall-normal derivative of temperature to be null.

2.2 Flow solver

We used an in-house Direct Numerical Solver (DNS), which features structured meshes that are refined in
regions of interest. A fourth-order Runge-Kutta scheme is used for time marching and fourth-order compact
spectral-like finite differences are used for the spatial derivatives [4]. A pencil-slab domain decomposition is used
for code parallelization [5]. A tenth-order spatial high-frequency filter is also employed [6] to prevent very short
wavelength spurious oscillations. Buffer zones are placed around the useful domain to attenuate undesirable open
boundary condition effects such as reflections. They employ a combination of grid stretching, lower order spatial
derivatives and Selective Frequency Damping (SFD) [7]. The SFD acts as a low pass temporal filter and may also
be turned on in the whole domain to allow base flows to be generated faster or at unstable conditions. Further
details of these methods and their implementation in our codes are given by [8–11].

2.3 Global stability analysis

To access the global stability, we use a global analysis routine, that uses a time-stepping approach, in which
the Jacobian matrix of the governing equations is not explicitly needed [12, 13]. The method uses the Arnoldi
algorithm [14] which is based on Krylov subspaces. It just requires the ability to compute vector multiplications
which, due to the way in which the algorithm is built, corresponds to a call to the flow numerical solver, in our
case, the code described in the previous section.

The time-stepping global instability analysis can be regarded as an established procedure and the current im-
plementation closely followed that of Chiba [15] and Tezuka and Suzuki [16]. In summary, the method iteratively
disturbs the base flow and uses the DNS to capture its response. The successive iteration involves disturbances that
are orthogonal to all previous ones. The flow response is used to form a corresponding Hessemberg matrix, which
is several orders of magnitude smaller than the flow’s Jacobian matrix. If the number of iterations is sufficiently
large, the leading eigenvalues and eigenvectors computed from this matrix are good representations of the flow
modes and provide good estimates of their respective amplification rates and frequency. In our convention, the real
part of the eigenvalue represents the growth rate in time, while the imaginary part represents its angular frequency.
Further details on the implementation are given by Mathias and Medeiros [11].

3 Results

3.1 Flow parameters and base flow

The reference flow for this study is a flat plate with a small rectangular gap. All variables are non-dimensional;
the reference length is the boundary layer displacement thickness at the gap’s leading edge, δ∗0 , the reference
velocity, density and temperature are those of the free flow. Reynolds number is Reδ∗0 = 1000, Mach number
is Ma = 0.5 and the gap’s length and depth are L = 10δ∗0 and D = 5δ∗0 . Five values for the wall temperature
(Tw) were chosen, from 80% to 120% of the reference temperature (T0), one case with adiabatic walls, instead
of isothermal, was also used. Using Reδ∗0 as the reference Reynolds number allows us to easily access the flow’s
spatial stability near the cavity; in this particular case, the flow is already spatially unstable.

The base flow for this scenario is shown in figure 1. This figure is for the Tw/T0 = 1 case, however there
were no visible changes in the velocity field of the base flows for other wall temperatures.

The distinction between the cases becomes clearer when we plot contours of temperature for each case, as
shown in figure 2. The flow temperature inside the gap becomes almost uniform and close to the wall temperature.
In the adiabatic case, the wall temperature has settled at 1.034T0 in the gap. Figure 3 shows the temperature
profiles for all cases, before, at, and after the cavity.
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Figure 1. Base flow with the wall at the reference temperature. Contours of stream-wise velocity every 20% of the
free-flow velocity.
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Figure 2. Contours of flow temperature with the wall at 80%, 100% and 120% of the reference temperature.
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Figure 3. Profiles of flow temperature for various wall temperatures. (Left) 10δ∗0 upstream from the leading edge
of the cavity. (Center) Middle of the cavity. (Right) 10δ∗0 downstream from the trailing edge of the cavity.

3.2 Global stability analysis

By using the global stability analysis, we can evaluate how the wall temperatures influences the flow stability
and its leading modes. Figure 4(Left) shows the eigenvalues of the most unstable (or least stable) modes for each
scenario. A positive real part in the eigenvalue indicates an unstable mode. The flow is only globally stable if all
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its modes are stable, as any unstable mode would grow exponentially until reaching a limit cycle due to non-linear
effects.

Two different modes were identified as being the most sensitive to changes in the wall temperature, those
are highlighted in Figure 4(Left) and have their real and imaginary parts shown in Figure 4(Right). Those modes
were identified as Rossiter modes 1 and 2 [17]. For Tw/T0 ≤ 0.9 mode 1 becomes unstable and for Tw/T0 ≤ 0.8
mode 2 is also unstable. Once more, the adiabatic case is positioned very similarly to an isothermal case with
Tw/T0 ≈ 1.03.
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Figure 4. (Left) Global stability eigenvalues for various wall temperatures. (Right) Real part (top) and imaginary
part (bottom) of the eigenvalue corresponding to Rossiter mode 1 (black) and mode 2 (red). The dashed line
corresponds to the adiabatic case.

One possible explanation for this destabilizing effect of reducing the wall temperature is what happens to the
Mach number. As the flow becomes colder in and close to the gap, the speed of sound is also reduced in this region.
Considering that the flow velocity is not changed, a reduction in wall temperature ends up causing an increase in
the Mach number in the gap, which is known to have a strong destabilizing effect on Rossiter modes [1].

However, the change in Mach number is not enough to explain this destabilizing effect. Mathias and Medeiros
[2] bring a Mach number sweep for a flow with these parameters and Ma = 0.7 results in the least stable flow;
nonetheless, no subsonic Mach number was found that has caused this flow to become unstable with Tw/T0 = 1.

Comparing all cases shown here, we have found that the flow pressure in the gap is almost independent on
the wall temperature. Therefore, as the flow becomes colder, its density must increase to maintain the pressure.
Figure 5 shows density profiles at the same positions as the temperature profiles of figure 3.

The increased flow density caused by the colder walls consequently increases the local Reynolds number,
which also has a strong destabilizing effect on the flow. Along with the increased Mach number, as discussed
earlier, this has caused this flow to become unstable as the wall temperature dropped below 0.9T0.
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Figure 5. Profiles of flow density for various wall temperatures. (Left) 10δ∗0 upstream from the leading edge of the
cavity. (Center) Middle of the cavity. (Right) 10δ∗0 downstream from the trailing edge of the cavity.

4 Conclusions

In this work, we have observed there is a destabilizing effect when the walls of a flat plate with gap are colder
than the incoming flow. Two mechanisms were found that justify this observation. First, the cooler flow has a
lower speed of sound, which increases the Mach number and, therefore destabilizes Rossiter modes. However, this
effect alone is not able to explain the large differences in global stability as the wall temperatures changed. The
second phenomenon we have found was that flow density increased as the walls became colder, as to maintain the
pressure; this causes an increase in the inertial forces and, therefore, the Reynolds number, further destabilizing
the flow. The adiabatic case was found to behave very similarly to an isothermal case with slightly heated walls.

These observations can be used by future works to allow better comparisons between computational sim-
ulations, in which wall temperature is often controlled, and simulation data, in which wall temperature is often
uncontrolled and depends on environmental and wind tunnel characteristics.
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tory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] M. S. Mathias and M. A. F. Medeiros. The effect of incoming boundary layer thickness and Mach number on
linear and nonlinear Rossiter modes in open cavity flows. Theoretical and Computational Fluid Dynamics, 2021a.
[2] M. Mathias and M. Medeiros. Spatial instability of boundary layers over small cavities and comparison to
global modes. In AIAA AVIATION 2021 FORUM, Reston, Virginia. American Institute of Aeronautics and Astro-
nautics, 2021b.
[3] J. D. Crouch, V. S. Kosorygin, and M. I. Sutanto. Modeling Gap Effects on Transition Dominated by Tollmien-
Schlichting Instability. In AIAA AVIATION 2020 FORUM, pp. 1–8, Reston, Virginia. American Institute of Aero-
nautics and Astronautics, 2020.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Comparison between the global flow stability of isothermal and adiabatic gaps in a boundary layer

[4] S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics,
vol. 103, n. 1, pp. 16–42, 1992.
[5] N. Li and S. Laizet. 2DECOMP and FFT-A Highly Scalable 2D Decomposition Library and FFT Interface.
Cray User Group 2010 conference, pp. 1–13, 2010.
[6] D. V. Gaitonde and M. R. Visbal. High-Order Schemes for Navier-Stokes Equations: Algorithm and Imple-
mentation Into FDL3DI. Technical report, Wright-Patterson Air Force Base, 1998.
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