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Abstract. A numerical model for tornado flow simulation is proposed in this work, where Adaptive Mesh 

Refinement (AMR) techniques are utilized. Owing to the increase observed in the annual occurrence of storms 

with tornado formation, investigations on tornado flow characteristics and its effects on buildings and structures 

are required. In this sense, a numerical algorithm based on the explicit Characteristic-Based Split (CBS) scheme 

is adopted to solve the system of flow equations, where four-node tetrahedral finite elements are employed in the 

spatial discretization procedures. An anisotropic mesh adaptation scheme based on Riemannian metric is coupled 

to the flow solver in order to capture high flow variable gradients in the tornado vortex region. Tornado flow 

fields are simulated here using numerical modeling of tornado experimental simulators and results obtained with 

the present model are compared with predictions presented by other authors in order to evaluate the influence of 

mesh adaptation on the accuracy of the numerical results. 

Keywords: Tornado Flows, Adaptive Mesh Refinement (AMR), Finite Element Method (FEM). 

1  Introduction 

Tornadoes are natural phenomena that occur on all the five continents, although they are more frequent in the 

central region of the United States, southern Brazil, northern Argentina and in the vicinity of the Himalayas [1]. 

In the last century, it was believed that tornadoes were quite rare in Brazil because only some events were 

captured by radar equipments. However, through media coverage and the advent of the Internet, the frequency of 

reports of these events has increased significantly in recent decades [2]. 

The action of a tornado is localized and of short duration, which makes it difficult to study real events in detail. 

Therefore, since the 70's tornado vortex chambers (TVCs) have been developed. In this sense, Ward [3] made a 

simulator that allowed to analyze the effect of the geometric configuration on the vortex patterns. Also, Haan et 

al. [4] demonstrated that Iowa State University's translating chamber was able to simulate the flow patterns of 

real tornadoes. Mishra et al. [5] presented the Texas Technological University simulator and compared the 

measurements obtained with predictions from analytical and numerical models and two real tornadoes. Refan [6] 

used flow visualization methods to test tornadoes in the WindEEE dome. 

On the other hand, with constant improvements observed in computers technology, numerical simulations have 

been also adopted. Among the different approaches available, tornado scale models that reproduce the shape of 

experimental simulators allow the study of flow patterns and their action on buildings with reasonable 

computational cost. Since the flow field developed during a tornado event is complex, mesh adaptation 

techniques are required to obtain accuracy and rational use of the finite element mesh. In this context, Nolan et 

al. [7] used a mesh-adapted numerical model to investigate the influence of domain size and Reynolds number 

on the numerical predictions. Nolan et al. [8] concluded that the same scheme can reproduce a full resolution 

model through levels of refinement as a function of the flow. Natarajan [9] utilized Fluent 6.3 to study the flow 
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characteristics considering the Ward-type Tornado Vortex Chamber (TVC), the WinDEEE Dome and the 

Atmospheric Vortex Engine (AVE), where mesh adaption was adopted. 

In the present work, a numerical model with adaptive mesh is proposed to reproduce the tornado flow field with 

low Reynolds Number in a Tornado Vortex Chamber. A finite element model based on the explicit CBS scheme 

is used, where linear tetrahedral elements are adopted for spatial discretization. Mesh adaptation including 

refinement, coarsening and node movement is performed anisotropically based on a Riemannian metric field for 

error estimation. 

2  Flow fundamental equations and numerical model 

A general purpose numerical code developed by Linn [10] is adopted here to simulate the flow field in a tornado 

vortex chamber. In order to reproduce incompressible flows, boundary conditions and Mach number must be 

specified accordingly. The flow fundamental equations may be described as follows: 
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where t denotes time, xi are the components of the Cartesian coordinates vector, with i = 1, …, d, Φ is the 

vector of flow conservative variables, Fi and Gi correspond to advective and diffusive terms, respectively, i.e.: 
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where  is the fluid specific mass, ui are components of the flow velocity vector given according to the Cartesian 

coordinate directions i = 1, ..., d, p is the flow pressure, ji are components of the Kronecker’s delta, with j = 
1, ..., d and E = e+uiui/2 is the total energy, with e = CvT denoting the internal energy, T the absolute 

temperature, k is the diffusion constant and ij are components of the viscous stress tensor [11]. The closure 

problem associated with Eq. (1) is resolved using the equation of state for perfect gas p = (  1)e, where  = 
Cp/Cv, with Cp and Cv representing the heat capacity for constant pressure and constant volume, respectively. 

Boundary and initial conditions must be specified in order to solve the system of flow equations given by Eq. 

(1). The flow fundamental equations defined in Eq. (1) describe a compressible flow which is numerically solved 

with a stabilized numerical method, the CBS scheme which can solve a wide range of flow speeds. The 

equations presented in Eq. (1) are further normalized, being transformed into the non-dimensional Navier-Stokes 

equations, which are normalized by non-dimensional flow parameters such as the Mach number and Prandlt 

number. For simulating flows with small compressible effects, a Mach=0.1 flow is considered in the 

compressible solver, which should reflects non-isothermal incompressible flows. The dimensionless velocity, 

pressure, energia total e temperatura are given by the relations: 
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where an over-bar indicates a non-dimensional quantity and subscript  represents a free stream quantity. 

The system of flow equations is discretized here using the Characteristic-Based Split (CBS) scheme [12], where 

a standard Galerkin weighted-residual procedure is applied in the context of the Finite Element Method (FEM) 

using linear tetrahedral elements. Considering an explicit scheme, the numerical model utilized here may be 

expressed with the following algorithm [12]: 

- Step 1: solve the first momentum equation to obtain *
iU : 
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- Step 2: calculate the specific mass increment : 
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- Step 3: solve the second momentum equation to obtain iU  and, consequently, 1n
iU : 
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- Step 4: solve the energy equation to obtain E : 

 2

,
2

n

ij j
i

n

k u u j

T
t k

x

t

M E C S E p T K u

u K T u E p
  (7) 

where a tilde (~) superscript indicates a nodal value, while the time increment is evaluated considering: 
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where c is the constant of Courant-Friedrichs-Lewy, with values specified between 0 and 1, c  is the local sound 

speed and l is the element characteristic length. For detailed information on the numerical model utilized in this 

work, see Linn and Awruch [13]. 

3  Mesh adaptation 

A mesh adaptation scheme based on Riemannian metric is used here to estimate the error and adapt the mesh 

anisotropically. By employing a Riemannian metric, the error can be estimated directionally as a tensor quantity 

with a well-established mathematical foundation. 

3.1 Metric evaluation 

From a discrete point of view, the metric field needs to be interpolated to assess approximate length and size in 

the Riemannian space. Considering a linear interpolation of the metric tensor, the length (ab) of an edge ab is 

obtained as [14]: 
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where T
i iab ab x ab  is the length of an edge ab in the metric system (xi), with i = 1, 2  

denoting its end points a and b. In a similar manner, the volume of an element K in the Riemannian metric space 

can be numerically approximated as: 
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where i(x) is the metric evaluated at every vertex i of an element K (assumed as a tetrahedral element), while 

|K| is the volume of the element in the Euclidian metric space.  

The anisotropic quality of an element K can be monitored through a quality function Q, which combines 

information on sizing and orientation [15], i.e.: 
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where AK are the edges of element K. By minimizing Q, the element quality is maximized in an anisotropic 

sense. 

The error (ab) estimated for an edge ab is defined as the upper limit of the difference between a quadratic 

approximation and the linear interpolation evaluated for a given continuous function , which can be expressed 

as: 

 
,ab ab
  (11) 

where the metric (x) is defined as the normalized Hessian of the function  measured in the norm Lp [16]: 
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where H() is a symmetric matrix representing the Hessian of . The Hessian matrix is evaluated using a weak 

formulation based on Green's formula [17]. 

An element edge ab is refined if (ab)  U and unrefined if (ab)  L, where  is the target adaption error 

specified by the user. The upper and lower error limit values U and L are assumed to be 1.4 and 0.6, 

respectively [14]. In the present investigation, the continuous function   is associated with the vector of flow 

variables, that is,  = [, u1, u2, u3, E]. Metric field intersection are performed in order to evaluate the error 

associated to the fields , u1, u2, u3, E as a minimum intersected field. Node movement is performed moving the 

nodes along the directions of the edges which they are connected. The movement increases the anisotropic 

quality of the mesh by minimizing the sum of the quality defined in Eq. 10 for the affected elements. Detailed 

information on the adaptation scheme utilized in this work may be found in the references [10].  

4  Numerical application 

Mesh adaptation is adopted here to simulate a tornado-like vortex flow in a cylindrical domain proposed by 

Nomura et al. [18], which reproduces the geometric configuration similar of the experimental simulator utilized 

by Matsui and Tamura [19]. 

The computational domain and boundary conditions utilized in the present investigation are shown in Fig. 1, 

where linear tetrahedral elements are employed. The mesh adaptation scheme proposed in this work is adopted 

considering error evaluations based on the flow variables ( = , u1, u2, u3, E) and a target error 3L
0.10, 

with error norm L3 and hmin = 0.005 m. 

 
(a)                                          (b)                                          (c) 

Figure 1. Tornado simulator: (a) computational domain and inicial finite element mesh; (b) adapted finite 

element mesh; (c) boundary conditions. 

Since the boundary conditions proposed by Nomura et al. [18] generate a thermodynamic problem for 

incompressible flows (the temperature field on the lower cylindrical surface changes to balance the traction-free 

condition with prescribed angle), the following boundary conditions are utilized (see Fig. 1 (b)): slip conditions 
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(un = 0) and E = Ew (total energy is prescribed considering T = 500 ºR = 277.77 K) on the ground and lateral 

walls (blue lines);  =  on the top of the chamber (red line) and u = u,  =  and E = E on the lateral 

walls of the lower cylindrical zone (green lines). Flow and computational parameters utilized in the present study 

are indicated in Tab. 1. 

Table 1. Flow and computational parameters. 

Variable Symbol Value 

Reference flow speed (free stream) u 1.0 

Reference specific mass of fluid  1.0 

Inflow direction  37.5° 

Swirl ratio S 0.38 

Mach number of the free stream Ma 0.1 

Prandtl number of the free stream Pr 0.720 

Reynolds number of the free stream Re 450 

Courant-Friedrichs-Levy constant c 0.6 

 

Figure 2 shows the streamlines and the flow velocity field obtained with the numerical model proposed in this 

work, where dimensionless velocity values |u| are considered. Notice that a typical flow pattern is observed, with 

helicoidal and ascending streamlines, which correspond to the flow field and velocity values presented by 

Nomura et al. [18], who identified a maximum dimensionless velocity of |u| = 2.81. 

 
(a)                                          (b) 

Figure 2. Streamlines and dimensionless flow velocity field: (a) 3D view; (b) plan view. 

 
(a)                                           (b) 

Figure 3. Flow fields, plan view at z = x3 = 0: (a) dimensionless pressure p; (b) dimensionless flow velocity 

component u1. 
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The dimensionless pressure p and flow velocity component u1 fields obtained in the present investigation are 

shown in Fig. 3, where the flow velocity vector field is also presented considering a plan view at z = x3 = 0. One 

can see that the pressure values indicated here are different from those predicted by Nomura et al. [18], although 

a decreasing trend for the pressure values can be observed towards the center line of the chamber. The flow 

velocity component u1 has maximum values (u1 = 2.34) at the radial position x2 = 0.04 m, where the finite 

element mesh is more dense due to mesh adaptation. 

Figure 4 presents plan views at x = x1 = 0 referring to results obtained here for dimensionless pressure, 

dimensionless flow velocity component u1 (with the velocity vector field) and temperature (given in Kelvin). 

The pressure distribution shows the characteristic funnel observed in tornado flow field, with a minimum value p 
= 70.74 at x3 = 0.15 m, although a constant pressure profile can be seen at the top of the chamber owing to the 

boundary conditions utilized in the present investigation. On the other hand, the velocity field presents maximum 

values at the chamber floor, which is consistent with the boundary condition adopted on that region (slip 

condition), and decreasing values as the height is increased. The temperature field given in Kelvin shows an 

approximately uniform distribution with slight decrease with height, where maximum and minimum values are 

found at the entrance and exit of the computational domain respectively. Notice that the present results can 

reproduce the vortex breakdown phenomenon (see Fig. 4b), which is characterized by a double circulation zone 

near the top of the experimental simulator [19]. This flow pattern was not observed in Nomura et al. [18]. 

 
(a)                                           (b)                                           (c) 

Figure 4. Flow fields, plan view at x = x1 = 0: (a) dimensionless pressure p; (b) dimensionless velocity 

component u1; (c) temperature T [Kelvin]. 

 
(a)                                           (b) 

Figure 5. Pressure and velocity profiles at x1 = x3 = 0: (a) modified pressure p*; (b) dimensionless velocity u1*. 

In Fig. 5, distributions of modified pressure 2* 75.3847 / 1.0 3.1734p p  and dimensionless flow 

velocity 1 1* / 3.1734u u  are presented along the dimensionless radial coordinate 2
2 2* /x x h R . It is 

observed that the maximum value of modified pressure (p* = 0.31) is 43% lower than that obtained by Nomura 

et al. [18], although the pressure profile shows a similar shape, with exception of extreme x2* values, where the 

pressure values presented a different behavior owing to the boundary conditions adopted here with respect to 

total energy E. The dimensionless velocity profile obtained here corresponds to the distribution presented by 

Nomura et al. [18], but the maximum values  (u1* = 0.74) are 23% higher than that obtained by the reference 
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work. It is important to notice that Nomura et al. [19] utilized a coarse mesh, with no adaptation scheme, and a 

lower swirl ration ( tan / 2S R h ) than that obtained here ( 1.50S with 71.6 ). 

5  Conclusions 

A numerical model based on the explicit Characteristic-Based Split (CBS) scheme was proposed in this work for 

tornado flow simulation, where Adaptive Mesh Refinement (AMR) techniques were utilized. A characteristic 

tornado chamber was numerically simulated and results demonstrated that the adaptation scheme adopted here 

was able to reproduce typical flow patterns observed in tornado vortex flows. In future research the fluid flow 

should be considered as transient and a larger Re number should be investigated, where turbulent effects would 

be present. 
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