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Abstract. The new coronavirus disease (COVID-19) has rapidly spread around the world, being considered a
pandemic with serious consequences. In this regard, epidemic models became an essential tool to describe and
predict epidemic evolution. A classical approach is the compartmental models where different populations are
employed to describe the system evolution. Typically, four populations are considered: susceptible, exposed,
infected and recovered, giving rise to the SEIR model. This paper proposes a dynamical map to describe Covid-19
epidemic based on the classical SEIR model taking into consideration the effect of vaccination. This novel map
describes the evolution of currently infected, cumulative infected and vaccinated population using three coupled
nonlinear algebraic equations. Due to the simplicity of the novel model description, useful information to evaluate
the epidemic stage can be obtained analytically, allowing the support of decision making. In this regard, the
herd immunization and the estimation of the number of deaths should be pointed out. Real epidemic data from
Germany, Italy and Brazil are employed in order to verify the model capability to describe the evolution of Covid-
19 dynamics.
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1 Introduction

The novel coronavirus disease (COVID-19) has become a major subject of research from different areas of
human knowledge since the World Health Organization characterized it as pandemic in March 11th 2020. There-
fore, the development and improvement of new epidemic models are of great importance in order to understand its
evolution and to establish proper health strategy plans.

Dynamical perspective is an interesting approach to deal with biomedical systems [1]. Through literature one
can find several approaches regarding dynamical epidemic models [2], employed to describe different infectious
diseases. An interesting and useful approach is based on population dynamics. These populations are employed
to represent the disease, establishing their evolution and interactions. Kermack and McKendrick [3] were one of
the pioneers in considering three populations in epidemic models: susceptible, infected and recovered (SIR). They
showed the course of an epidemic might not be terminated necessarily by all individuals becoming infected. An
evolution of this approach was due to Anderson [4] and May [5] that considered an extra population: exposed
(E). Nowadays, a well-established epidemic model is based on the susceptible-exposed-infected-removed (SEIR)
framework.

Concerning the COVID-19 pandemic, Lin et al. [6] proposed a conceptual model for COVID-19 evolution
in Wuhan, China, considering individual behavior reaction to the outbreak scenario and governmenatal actions.
Ramos et al. [7] developed a novel mathematical model taking into consideration different sanitary and infectious-
ness conditions of hospitalized people, as well as undeteced cases. Chen et al. [8] used an extended SIR model also
considering the effect of undetectable persons. Savi et al. [9] applied the SEIR descritpion to investigate the pan-
demic evolution in Brazil. Results showed the importance of both individual and governmental actions to control
the virus spread and to reduce the number of infected. Pacheco et al. [10] improved the model including hospital
infrastructure and explicitly spliting removed populations into recovered and deaths. Sujath [11] employed a ma-
chine learning method to forecast COVID-19 evolution in India employing linear regression, multilayer perception
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and vector auto regression methods.
An alternative to continuous differential models might be established by maps, which are discrete-time and

governed by a system of algebraic equations. In this regard, dynamical maps have advantages due to their simplic-
ity. Alonso-Quesada et al. [12] argued the use of discrete-time instead of continuous-time models are preferred
since the amount of necessary computation effort can be reduced considerably. Also, since epidemic statistics
take place on fixed time intervals, it makes easier to parameterize a discrete-time than a continuous-time epidemic
model. Enatsu et al. [13] asserted there are situations that constructing discrete epidemic models are more appro-
priate to understand disease transmission dynamics and to evaluate eradication policies since they permit arbitrary
time-step units, preserving the basic features of corresponding continuous-time models.

This work deals with a novel COVID-19 nonlinear dynamical map that represents the epidemics from the
framework of infected, cumulative infected and vaccinated populations. The discrete-time model is developed
based on the SEIRV model that considers susceptible-exposed-infected-removed-vaccinated populations, and re-
duces the six coupled ordinary differential equation into three nonlinear algebraic equations. Good agreement
between real data and map simulations was obtained employing COVID-19 data from Germany, Italy and Brazil.
Ordinary pandemic scenarios, such as a multi-wave pattern, can be obtained from map simulations. Due to the
simplicity of the model, it is possible to obtain analytic expressions regarding the infectious ratio and the herd im-
munization point. The effect of vaccination is also carried out, which shows its importance to reduce the number
of deaths.

2 Mathematical Model

The main objective of this work is to develop a dynamical map to describe COVID-19 epidemics based on
the classical SEIR framework. Moreover, an extra population is included considering the effect of vaccination,
defining hence an SEIRV model. The populations employed are: susceptible, S; exposed, E; active infected, I;
removed,R; and vaccinated, V . In addition, the cumulative infected populationC is incorporated as a useful model
information. An essential assumption is that reinfection is neglected and, therefore, each individual can be infected
only once. Moreover, once vaccinated, an individual cannot become infected anymore. Another assumption is that
the population V accounts only for the vaccinated population, which excludes situations where vaccination occurs
after the infection.

On this basis, the SEIRV governing equations are defined as follows.

Ṡ = −βSI − υ (1a)

Ė = βSI − σE (1b)

İ = σE − γI (1c)

Ṙ = γI (1d)

V̇ = υ (1e)

Ċ = σE (1f)

where over dot represents time derivative; β is the transmission rate which is directly associated with social
isolation; σ−1 is the mean latent period; γ−1 is the infectious period; and υ = υ(S) is the vaccination rate that
is considered as a function of the susceptible population. It should be pointed out that dimensionless variables
are considered herein and, therefore, (S,E, I,R, V ) ∈ [0, 1] and S + E + I + R + V = 1. Since reinfection is
neglected and since the average immunity period after vaccination is usually longer than the mean latent period, an
exposed individual eventually becomes infected before acquiring immunity. Therefore, the effect of vaccination is
herein considered only in Eq. (1a), being characterized by moving susceptible population towards to the vaccinated
group.

The map is derived from these differential equations adopting some basic assumptions. By considering each
one of the populations, represented by X , its time derivative is trated as Ẋ = lim∆t→0(X(t + ∆t) −X(t))/∆t,
which means that Ẋ ≈ Xn+1−Xn if ∆t = 1 and n representing the n-th day. Additionally, it is assumed that the
ratio E/I in the beginning of the outbreak is kept constant through the whole epidemic period, which means that
E = ΛI and Ė = Λİ .
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Under these assumptions and after algebraic manipulation, the COVID-19 map yields

In+1 =

[
1 +

β[1− (Cn + Vn)− (γ + Λ)In]− γ
1 + Λ

]
In (2a)

Cn+1 =
{γΛ + β [1− Vn − (γ + Λ)In]}In + (1 + Λ− βIn)Cn

1 + Λ
(2b)

Vn+1 = Vn + υ(In, Cn, Vn) (2c)

with

Λ =
γ − σ +

√
(γ − σ)2 + 4βσ

2σ
(3)

and where Λ = E/I is a constant estimated by a parametric condition (β, σ, γ). It is important to highlight that,
despite this novel map is employed herein to describe COVID-19 dynamics, it can also be employed to describe
the dynamics of any other epidemics.

The vaccination rate in the map is assumed to be a function of the infected, cumulative and vaccinated
populations, υ = υ(I, C, V ). Since 0 ≤ V ≤ 1, it is imposed the constraint v(I, C, V ) = 0 ∀ (I, C, V ) | C +
V = 1. Vaccination strategy can be implemented by different ways. The simplest case assumes a constant
vaccination rate for individuals, υ = φ, where φ is the vaccination coefficient. A more realistic representation
considers that the vaccination rate is proportional to the susceptible population, υ = φS.

The cumulative number of deaths, D, can be estimated based on the total infected population C. Therefore,
the total number of deaths is expressed by

Dn = µCn (4)

where µ is the death rate, which is usually around 2%. It should be pointed out that the current number of deaths
can be determined by the difference Dn −Dn−1.

In epidemic models, the transmission rate β is the critical parameter to characterize the COVID-19 dynamics,
being related to social isolation and virus contagious capacity. Virus variants can be represented by changes on this
parameter considering that a more contagious variant increases the value of the transmission rate for the same level
of social isolation, for example. Nevertheless, virus variants are neglected in this work and, therefore, transmission
rate is directly related to social isolation. Since the social isolation is clearly time dependent, it is convenient to
define β = β(n). The time dependence can be established from an adjustment with real data, defining a proper fit.
An interesting approach to match real data is the use step functions, defined as follows by Eq. (5) for m steps.

β(n) =


β1 , if 0 ≤ n ≤ T1

β2 , if T1 < n ≤ T2

...

βm , if n > Tm−1

(5)

The other parameters, σ and γ, usually assumes typical values for COVID-19 dynamics [6, 9]: σ = 1/3 and
γ = 1/5. These parameters are employed in all simulations. The vaccination coefficient φ can also vary through
time, which means that vaccination campaigns can be also modeled by step functions. This approach is interesting
to describe situations related to lack of vaccines, for example.

2.1 Infectious Rate

A quantity that is often employed in the context of epidemic models it the infectious rate r, defined herein
based on the ratio between two subsequent iterations of currently infected population.

rn =
In+1

In
(6)

The infectious increases in a specific time if rn > 1, and decreases otherwise, if 0 < rn < 1. The case
rn = 1 is the transition between both conditions. By taking the active infected given by Eq. (2a), one can obtain
the ratio rn as a function of In and (Cn + Vn), which yields

rn = 1 +
β[1− (Cn + Vn)− (γ + Λ)In]− γ

1 + Λ
(7)
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Consider now the system state space I-(C + V ) showing the curves standing for Eq. (7) with rn = 1. This
map is a representation of the state space being presented in Fig. 1a for various values of β and constant values of
σ and γ. Since the curves are related to rn = 1, the region below each curve is associated with values of rn > 1
while above the curve is related to rn < 1. Hence, the region below the curve is associated with a growth of active
cases. The peak of I occurs when the epidemic evolution on the state space crosses the curve for rn = 1. Fig. 1a
allows one to obtain the number of total infected plus vaccinated required to prevent the increase in the number
of active cases regardless the number of currently infected and considering fixed parametric combination. In other
words, when the sum C + V reaches a critical value, the infected population I necessarily decreases. Thus, the
herd immunization point, Ph, is defined when this critical situation is achieved and I = 0 (see Fig. 1b). In other
words, for any given parametric combination, if C + V ≥ Ph, then r < 1 ∀ I .

Increasing β
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Figure 1. State space I-(C + V ) with infectious rate equals to 1 (Eq. (7) with r = 1) for σ = 1/3, γ = 1/5 and β
ranging from 0.2 to 1 with step of 0.1 (a), and the herd immunization point Ph indication for β = 0.5 (b).

The value of the herd immunization point Ph can be analytically defined as a function of the parameters
(β, σ, γ). By considering rn = 1 and In = 0 in Eq. (7) and after some algebraic manipulation, one obtains the
following expression

Ph = 1− γ

β
(8)

One might notice this is a function of the transmission rate β and the infectious period γ−1, being not de-
pendent on the latent period σ−1. Also, it is noticeable an increase of the transmission rate β results in a higher
value of Ph. In other words, the higher is the transmission rate, the bigger is the infected-vaccinated population
needed to achieve the herd immunization point. Regarding the limit β → ∞, it yields Ph → 1, as one expected.
This means that, in order to have rn < 1, it is necessary that 100% of the population becomes either infected or
vaccinated. Finally, making Ph = 0, one obtains β = γ, which means that for any β < γ the number of active
cases necessarily decreases regardless the numbers of I or (C+V ). Therefore, the higher is the average infectious
period, given by γ−1, the lower is the transmission rate coefficient required. In other words, for a larger average
time an individual remains infected, the transmission coefficient needs to decrease in order to obtain a negative
infectious rate regardless the epidemic stage.

In the sequence, the COVID-19 map is applied to describe the epidemic dynamics using real data from
Germany, Italy and Brazil as references.

3 Model Verification

The novel COVID-19 map is now employed to perform a dynamical analysis of the pandemic. Real data
from the novel COVID-19 epidemics in Germany, Italy and Brazil are employed as reference considering informa-
tion from Worldometer webstie (https://www.worldometers.info/). The comparison is established by considering
nondimensional values, dividing each population by the total population of the country. In this regard, the fol-
lowing values are adopted to each country: Germany Nger = 83.03 × 106; Italy Nita = 60.36 × 106; Brazil
Nbra = 211 × 106. The time period ranges from 6th March of 2020 (n = 0) to 21st January of 2021. Due to
natural seasonality in real data, a 7 day average is then employed, giving rise to a new data set. Both infected
I and cumulative C populations are of concern showing a two-wave pattern. Fig. 2 displays the active cases in
time for the three countries. For Germany and Italy cases, the first wave peak occurred after April 2020, while the
Brazilian case shows a longer first wave, which is actually a plateaus pattern. Due to this pattern, the Brazilian

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Eduardo V. M. dos Reis, Marcelo A. Savi

second wave started from a high level value of infected. On the other hand, Germany and Italy present the second
wave peak around December 2020 and the number of active cases began to drop at the end period. Based on these
observations, COVID-19 is characterized by different patterns. A bell shape behavior is the essential point to be
observed, but it is clear the possibility of either multi-wave or plateaus patterns.

Transmission rate is defined by step functions presented in Eq. (9). These functions were obtained employing
the Least Square Method to fit real active cases data. Fig. 2 presents the comparison between numerical simulations
and real data showing a good agreement for all countries. Based on that, it is possible to conclude that the COVID-
19 map captures real data including the multi-wave scenario. The main difficulty is the proper determination of
the transmission rate.

βger =



0.570 , if 0 ≤ n ≤ 28

0.150 , if 28 < n ≤ 143

0.286 , if 143 < n ≤ 260

0.220 , if 260 < n ≤ 294

0.200 , otherwise

; βita =



0.530 , if 0 ≤ n ≤ 16

0.250 , if 16 < n ≤ 45

0.160 , if 45 < n ≤ 140

0.257 , if 140 < n ≤ 221

0.325 , if 221 < n ≤ 260

0.220 , otherwise

;

βbra =



0.500 , if 0 ≤ n ≤ 60

0.300 , if 60 < n ≤ 95

0.225 , if 95 < n ≤ 153

0.200 , if 153 < n ≤ 247

0.250 , otherwise

(9)

Real Data

Map Simulation

Mar/20 May Jul Sep Nov Jan/21
0.

0.1

0.2

0.3

0.4

0.5

I
x

1
0
-

2

(a) Germany

Real Data

Map Simulation

Mar/20 May Jul Sep Nov Jan/21
0.

0.3

0.6

0.9

1.2

1.5

I
x

1
0
-

2

(b) Italy

Real Data

Map Simulation

Mar/20 May Jul Sep Nov Jan/21
0.

0.1

0.2

0.3

0.4

0.5

0.6

I
x

1
0
-

2

(c) Brazil

Figure 2. Infected active cases I for Germany (a), Italy (b) and Brazil (c) for the whole period range employed.
The continuous line stands for real data and dashed line for the map simulation.

4 Effect of Vaccination

This section investigates the effect of vaccination on the COVID-19 dynamics. It is adopted a situation where
the vaccination starts on the last day of the real data period: 21st January 2021. The transmission rate employed
in the simulations is the mean value from β(n) of the last 90 days of the period range, yielding: βger = 0.227,
βita = 0.230 and βbra = 0.224. Real data time series is employed to calculate the transmission rate β(n) at each
time step for each country using Eq. (2a) and employing Newton’s method. Moreover, the vaccination model

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



A Nonlinear Dynamical Map For COVID-19

employed to represent the vaccination approach is υ = φ, and three coefficients are adopted: φ = 0, 10−3 and
10−2. The case φ = 0 naturally stands for no vaccination. Fig. 3 presents the effect of vaccination on the evolution
of the epidemic for each country, showing that vaccination has a huge impact on the COVID-19 dynamics. The
higher the vaccination rate is, the lower is the peak reached by active cases and the lower is the total infected
population after the epidemic period. Moreover, it should be noticed that the time required to achieve, for instance,
I = 10−4 - one infected individual for each ten thousand inhabitants, takes place sooner for higher vaccination
rates. As expected, the absence of vaccination results in the worst scenario. These conclusions can be drawn
for all the three countries. Hence, vaccination is the only possibility to make Ph increase without increasing C.
Finally, since the mean value of transmission rate from last 90 days is employed for each country and not its value
at the last real data day, a slope discontinuity might occur in the curves at beginning of simulation time. This
outcome, however, does not invalidate simulations predictions since oscillations in real data due to transmission
rate oscillations are natural and might lead to such discontinuities.

ϕ=0
ϕ=10 -3ϕ=10

-2

Jan/21 Mar May Jul Sep Nov Jan/22
0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I
x

1
0
-

2

ϕ=0

ϕ=10
-3

ϕ=10
-2

Jan/21 Mar May Jul Sep Nov Jan/22
0

5

10

15

20

25

30

C
x

1
0
-

2

(a) Germany

ϕ
=
1
0 -

2

ϕ
=
1
0 -

3

ϕ=0

Jan/21 Mar May Jul Sep Nov
0.

0.3

0.6

0.9

1.2

1.5

I
x

1
0
-

2

ϕ=0
ϕ=10

-3

ϕ=10
-2

Jan/21 Mar May Jul Sep Nov
0

5

10

15

20

25

30

C
x

1
0
-

2

(b) Italy

ϕ=0ϕ=10 -3
ϕ=10

-2

Jan/21 Mar May Jul Sep Nov Jan/22
0.

0.1

0.2

0.3

0.4

0.5

0.6

I
x

1
0
-

2

ϕ=0

ϕ=10
-3

ϕ=10
-2

Jan/21 Mar May Jul Sep Nov Jan/22
0

5

10

15

20

25

C
x

1
0
-

2

(c) Brazil

Figure 3. Effect of vaccination in Germany (a), Italy (b) and Brazil (c) countries with βger = 0.227, βita = 0.230
and βbra = 0.224, respectively. The continuous lines stand for real data whose final point is marked as a solid point
in the each figure. Dashed lines stand for numerical simulations from this point on for three different vaccination
coefficients: φ = 0, 10−3 and 10−2.

Regarding the simulation of the number of deaths, the death rate µ is adopted based on the average of the
final 90 days of the period: 1.86% for Germany, 3.95% for Italy, and 2.68% for Brazil. Without vaccination, the
total infected population reaches 24.75%, 29.27% and 22.83% in Germany, Italy and Brazil, respectively. If the
vaccination is implemented with 10−2 rate, the number of total deaths can drop to 35%, 67% and 59% in these
three countries, respectively.

Additionally, the estimated date to reach I = 10−4 for the situations with absence of vaccination is about
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Feburary 2022 for Germany and Brazil, and November 2021 for Italy. Nevertheless, considering the vaccination
coefficient φ = 10−2 shortens this period in several months, and I = 10−4 is reached about April 2021 for all the
three countries. Therefore, the vaccination drastically anticipates the end of a huge crisis.

5 Conclusions

This paper proposes a dynamical map to describe COVID-19 epidemics based on the classical SEIRV con-
tinuous differential equation. The discrete-time model is advantageous since it requires less computation efforts,
avoiding differential equation solution, being easier to determine parameters and allowing the determination of
critical scenarios from analytic tools. The infectious ratio and the herd immunization point are some useful exam-
ples, where the latter is shown to be a function of the transmission rate and the infectious average period, being
independent of the mean latent period. Real data from Germany, Italy and Brazil are employed to verify the map
capability to describe the COVID-19 epidemics multi-pattern, showing a good agreement. The effect of vacci-
nation is investigated and results showed that a proper vaccination rate can dramatically reduce the total infected
population and deaths. Also, for a higher vaccination coefficient, the end of the epidemics can be anticipated in
several months, avoiding thus a possible huge crisis. Based on these results, it is clear that the novel map is useful
for COVID-19 scenario evaluation, being an easy alternative to be employed.
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