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Abstract. A fundamental parameter in the epidemiology of infections is the so-called basic reproduction number,
R0, loosely defined as the number of new infections an infected individual will subsequently cause. This parameter
is central to traditional SIR models and plays a key role in dictating transmission dynamics. However, R0 is
typically ill-defined since it does not specify the time interval over which such secondary infections will occur.
In SIR models, R0 also has a different interpretation depending on the assumed kinetics of infection. In this
paper, we borrow concepts from a recent publication [1] to provide explicit expressions for R0 in terms of key
physio-chemical, environmental, and operational parameters, including the spatial population density, which is
fundamental to the health policy of spatial distancing. We then explore how R0 varies depending on the kinetics
assumed, motivated by the special case of interactions in enclosed environments for which the SIR model needs to
be reformulated. We consider, as a special case, super-spreader events, where we show that if one were to use the
SIR model, the effective value of R0 will be a significantly large, albeit decreasing, function of the duration of the
event, suggesting a delta-function-like behavior. We comment on a possible extension of the SIR model to capture
different infection kinetics by introducing an additional dimensionless number m, which represents the one-to-m
collision mechanism expected for the spread of infections in enclosed or high-density environments.
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1 Introduction

The spread of epidemics, such as COVID-19, has been traditionally addressed using a number of models in
which the so-called basic reproduction number R0, roughly defined as the number of new infections an infected
individual will subsequently cause, plays an important role. This parameter is central to traditional SIR models
[2, 3] and plays a key role in dictating transmission dynamics. However, its relation to fundamental parameters,
such as spatial density, the kinetics of transmission of infection, and the mobility of populations (via dispersion
or advection) and other parameters, is not well understood. In a recent paper [1], we provided a comprehensive
model for the propagation of infection, based on an analogy with chemical reaction models, that provides a solid
foundation for the spreading of epidemics and delineates the dependence of R0 on measurable parameters. In that
model we proceeded with the standard SIR assumption [2, 3] that infection is the result of one-to-one interaction
between two individual species (susceptible and infected), where infection occurs at a certain rate following such
encounters. Specifically, we modeled the process with an equivalent chemical reaction scheme

S + I 7→ 2I (1)
I 7→ R (2)

where S denotes susceptible, I denotes infected andR denotes recovered (or perished) populations. An interesting
question is to inquire whether or not such a scheme also applies to different modes of infection; for example, those
occurring in enclosed environments, which enable the possibility that an infected individual can simultaneously
infect multiple susceptible ones. For diseases such as COVID-19, which are transmitted via droplets and aerosols,
indoor gatherings, characterized by a number of people in close proximity (i.e., high spatial density) actively
vocalizing or interacting with one another [see e.g., 4, 5], will likely have different dynamics than the one-to-
one SIR-like model described in (1)-(2). A particularly relevant application involves so-called super-spreader

CILAMCE-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Understanding the R0 of Epidemics

events, which have been known to play a critical role in the spreading dynamics of infectious diseases. Including
super-spreader events in conventional SIR models is particularly challenging given the vastly different time scales
associated with infection progression (O(10) days for COVID-19) and event duration (typically O(1) hour).

In this paper, we reconcile the dynamics modeled in conventional SIR models with those expected in enclosed
environments for events of short duration. Our results suggest new extensions to the conventional SIR dynamics
in order to capture different modes of interaction and their kinetics. The remainder of this paper is organized
as follows. We first describe the fundamentals of the SIR model and explore how to connect it with enclosed
environments events that obey different infection kinetics involving infected individuals who are responsible for
spreading the disease to a large number of susceptible individuals [6, 7]. We identify the correspondingR0 number
and comment on its value for COVID-19 super-spreader events [1]. We also comment on an extension of the SIR
model to capture different kinetics by introducing an additional dimensionless number m(≥ 1), which represents
the one-to-m collision mechanism for the spread of infections in enclosed or other high-density environments.

2 Model Formulation and Predictions

We first summarize the key results obtained in [1] where a continuum model was formulated in terms of the
population spatial density ρ (number of people/area) and the relative population (species) fractions, s = ρs/ρ,
i = ρi/ρ, and r = ρr/ρ and their variation in time and space, and where ρn denotes the spatial density of species
n. The corresponding species conservation equations, expressed in dimensionless notation, read as follows, :

∂s

∂t
+Da∇ · (vs)− C∇(ln ρ) · ∇s = ∇ · (C∇s)−R0(ρ, r)si (3)

∂i

∂t
+Da∇ · (vi)− C∇(ln ρ) · ∇i = ∇ · (C∇s) +R0(ρ, r)si− i (4)

∂r

∂t
+Da∇ · (vr)− C∇(ln ρ) · ∇r = ∇ · (C∇r) + i (5)

∂ρ

∂t
+Da∇ · (vρ) = 0 (6)

where s+ i+ r = 1. In the above, space is normalized by a characteristic length L and time by the characteristic
time, Tr, associated with the kinetics of the recovery (assumed to equal 14 days for COVID-19) and we have
defined a dimensionless Damkohler number, Da = UTr/L, a dimensionless diffusion number, C = DTr/L

2,
and the rescaled velocity v, based on a characteristic dimensional velocity U . We stress that (3)-(6) are expressed
in terms of spatial densities, which are the physically relevant variables, rather than in terms of the number of
individuals, which is typical in the more traditional SIR-type modeling framework.

Equations (3)-(6) include spatial transport by advection (through Da) and diffusion (through C), and time
variation through reaction (conversion of one species to another). Following the key premise of SIR models,
we modeled infection and recovery rates in terms of two equivalent irreversible chemical reactions between the
species described in (1) and (2). Note that in the RHS of (1) the stoichiometric coefficient 2 implies that a new
member of the infected species I is produced as a result of an interaction between a member of I and a member
of the susceptible species S. Equation (2) states that a member of species I is converted to the recovered (or
perished) species R, which is a statement largely independent of the average rate of the process of infection. The
infection rate intensity is characterized by the important dimensionless parameter R0(ρ, r) which corresponds to
the conventional reproduction number and in [1] is explicitly defined as

R0(ρ, r) =
K0ρ

Λ
κ(ρ, r). (7)

Equation (7) states that R0(ρ, r) is proportional to the density ρ, and the kinetic parameter K0 (dimensions of
[time×(number/area)]−1) and the dimensionless parameter κ(ρ, r) > 0. K0 and κ(ρ, r) depend on a number of
factors (from spatial distancing to face covering to physiological and environmental parameters). Parameter K0

implicitly accounts for the frequency of encounters (collisions) between individuals and the intensity of interaction,
in addition to biological (infection) and environmental (e.g., face covering) factors. It can capture biological effects
such as the increased contagiousness associated with different variants (e.g., as in the current case with the delta
variant). Dimensionless parameter κ(ρ, r) varies with spatial distancing and the extent of the epidemic, r. For
example, beyond a critical distance (below a critical density value ρ0) we expect that infection rates are negligible
(κ(ρ, r) � 1); conversely, there is a maximum limit ρ1 denoting closest packing where κ(ρ, r) takes the value of
one. These considerations, as well as the fact that the effect of spatial density in κ(ρ, r) should also account for the
fraction of recovered individuals r, are further discussed in [1].
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In [1] we examined a number of phenomena, including diffusion and advection. However, in this paper we
will only consider the batch reactor limit, where all spatial gradients in (3)-(6) vanish. The same limit will be
considered as we discuss expressions for other kinetic rates, including those for super-spreader events. In a batch
reactor environment, the resulting equations are similar to the SIR-like model [2, 3, 8]:

ṡ(t) = −R0(ρ, r)si (8)
i̇(t) = R0(ρ, r)si− i (9)
ṙ(t) = i (10)

This set satisfies the constraint s+ i+ r = 1 and it is subject to initial conditions:

i(0) = i0; s(0) = s0 = 1− i0; r(0) = 0. (11)

Equations (8)-(10) contain the single dimensionless parameter R0, also commonly denoted as the reproduction
number and assumed to express the expected number of secondary infections generated by an infected individual.
We point out that this interpretation is actually incomplete, since it does not specify the interval of time over which
such infections will occur. The following simple calculation shows the difficulty inherent to such an interpretation.

Ignore for a moment the dependence of R0 on r, and take s constant. Then, equations (8)-(9) give

i ≈ i0 exp [(R0 − 1)t] (12)

which is the familiar exponential rise in infections at the onset of the epidemic (if R0 > 1). The cumulative total
at time t is ∫ t

0

i dt ≈ i0
(R0 − 1)

[exp [(R0 − 1)t]− 1] (13)

If we were to take R0 to be the average number of new infections caused by an average infected person, namely
for the relation R0 = (

∫ t
0
i dt)/i0 to hold, we must specify the time interval, tR0 , given by equation

tR0
=

ln[1 +R0(R0 − 1)]

(R0 − 1)
(14)

Clearly, tR0 is not constant and depends on R0 itself. For example, for R0 = 2, 4 (or 250) we find t2 = 1.09,
t4 = 0.85 (or t250 = 0.044) corresponding to about 15 days, 12 days (or 15 hours), respectively, under the present
normalization. While more refined estimates are possible, given that the infection curve ceases to be exponential
after some time, it is clear that interpreting R0 as the ratio of secondary infections to initial infections is not
well-posed. For this reason, we will elect to consider R0 as simply a dimensionless parameter that measures in a
monotonic fashion the intensity of contagiousness and the strength of the infection rate.

Qualitative as it might be, this observation is significant in relation to super-spreader events or events that
follow different infection kinetics. Typically, super-spreader events occur over a time of the order of a few hours,
which in the present dimensionless notation, expressed with a characteristic time of 14 days, is very small (e.g.,
roughly 0.015 for an event of 5 hrs duration). Using the standard SIR model, it follows that for a significant
infection to occur during these events, the corresponding R0 must be very large during that time interval. We will
explore whether this is indeed the case by obtaining a quantitative estimate for such events. It is also important
to anticipate that while the rate expressions in (3)-(5) depend linearly on i (through the product is), this will not
necessarily be representative of the kinetics in enclosed environments, where air circulation and the dynamics of
infection may cause longer-range interactions, giving rise to behavior not captured by (1). This is a key point of
this paper and is further discussed below. A signal of a qualitatively different behavior is that parameter R0 of the
conventional SIR model becomes time-dependent during such events.

2.1 Modeling Infection in Enclosed Environments for Short Duration Events

Consider, now, an enclosed-environment event (e.g. a super-spreader event), starting at time t∗ and lasting
over the interval Tss, where ε = Tss/Tr � 1. For example, for Tss = 5 hr and a recovery time scale characteristic
of COVID-19 (Tr = 14 days = 336 hr) we have ε ≈ 0.015. Take, next, the conventional SIR model (based on
the one-to-one interaction) and assume that it also applies during the event. For this, we must allow R0 to be
time-dependent (which will be shown below to be necessary since the one-to-one infection kinetics are not valid
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in an enclosed environment). By rescaling time around t∗, and defining τ = (t− t∗)/ε, equations (8)-(10) read

ds

dτ
= −εR0(t∗ + ετ, r∗)si (15)

di

dτ
= εR0(t∗ + ετ, r∗)si− εi (16)

dr

dτ
= εi (17)

For such short-duration events, the limit ε→ 1 applies. This implies that the recovered fraction remains practically
constant, r ≈ r∗, thus

s+ i ≈ s+ + i+ ≈ s− + i− = c∗ = 1− r∗. (18)

where subscript + denotes states after the conclusion of the event and subscript − denotes states before the event.
The sum c∗ of susceptible and infected individuals is constant at the onset, during the event, and at the conclusion
of the event. Inserting (18) in equation (16) then gives

di(τ)

dτ
= εR0(t∗ + ετ ; r∗)(c∗ − i)i (19)

which can be integrated to yield

i

(c∗ − i)
=
i−
s−

exp

[
c∗ε

∫ τ

0

R0(t∗ + ετ ; r∗)dτ

]
. (20)

At the conclusion of the event (t− t∗ = ε, namely τ = 1), infected and susceptible fractions are given by

i+ =
i−c
∗ exp[c∗b1]

s− + i− exp[c∗b1]
(21)

and
s+ =

s−c
∗

s− + i− exp[c∗b1]
. (22)

respectively. Here, we also defined a quantity that represents the cumulative action of R0 during the event,

b1 ≡ ε
∫ 1

0

R0(t∗ + ετ ; r∗)dτ. (23)

Clearly, for non-trivial changes in infection to occur during such an event, R0 must be significantly large (order of
ε−1), suggesting a delta-function-like behavior. As expected, s+ < s− < 1, i+ > i−, while the maximum of i+
is c∗, reached when s+ = 0, namely when all susceptible individuals are infected at the conclusion of the event.
Conversely, when c∗b1 � 1, the event is not of the super-spreader kind, i.e., i+ ≈ i− and s+ ≈ s−. We note that
(21) and (22) are valid regardless of the type of evolution of the epidemic prior to the event as they only depend on
the values i− and s−. We also remark that the above results apply to all short duration events, whether or not they
correspond to enclosed environments. The effect of the latter is addressed in the next section.

2.2 Infection Kinetics in Enclosed Environments and R0

We now turn to the question of what are actually the true kinetics in enclosed environment events (whether
or not of the super-spreader type) where airborne transmission is suspected [4, 5], and what are the corresponding
values of R0 (and b1) over short duration events. To make progress we will ignore for the moment the SIR model
and use instead the Wells-Riley framework for transmission risk [5, 9–12]. In such models, the increase in the
infected fraction is given by the following

i+ − i− = pts− (24)

where the transition probability pt is defined as

pt = 1− exp

(
− D
Di

)
. (25)

Here, D denotes the cumulative pathogen intake (e.g., the number of SARS-CoV-2 RNA copies for COVID-19)
for an individual at the event and Di the dose that leads to transmission in roughly 63% of the cases.
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Comparing (24) and (25) with (21) shows that the SIR model formalism cannot capture these kinetics. Indeed,
if we were to force an agreement between the two it would require a time-varying R0 and a dependence on the
process parameters, likely including the initial conditions as well, which is contrary to the expected constancy of
R0 in the SIR framework. However, this mismatch is indeed expected given the different kinetic rates assumed in
the two models. One way to reconcile the two would be to view the enclosed environment short-duration event
using a similar effective chemical reaction formalism as in (1) but with a different stoichiometry, namely

S +
1

m
I 7→ 1

m
I + I (26)

where m is the number of susceptible individuals that can be infected at the same time by an infected individual,
and further take m→∞. In that limit, the reaction rate will not depend on species I , thus we can write instead of
(19) the following

di

dτ
= εR0,∞s = εR0,∞(c∗ − i), (27)

where the new parameter R0,∞ is the prefactor in rate expression corresponding to (26) at m→∞ (the rate being
only proportional to s) and the subscript∞ is used to indicate the largem limit. Implicit to (27) is also the previous
assumption that the event is of a small duration, thus allowing us to neglect any recovery of infected individuals.

Integrating (27) and evaluating at the end of the event then yields

i+ − i− = (c∗ − i−) [1− exp(−b∞)] = s− [1− exp(−b∞)] (28)

where
b∞ ≡ εR0,∞. (29)

It follows that equation (28) is identical to the model in equations (24)-(25), subject to the identification

b∞ =
D

Di
. (30)

We conclude that the enclosed environment kinetics can be captured using the one-to-m infection rate formalism
of (26) in the large m limit. We can make further progress by using the simplified well-mixed room model [13],
and express the normalized virus dose for a susceptible individual at the event as

D

Di
=
CssQTss
Di

, (31)

Here, Q is the typical volumetric respiration rate (m3hr−1) and Css is the average airborne virus concentration
(virus RNA copies m−3). Assuming steady state conditions, limited settling due to gravity and no virus decay, the
latter can be approximated by

Css =
ρi−
hVac

Ei, (32)

where h (m) is the height of the room, Vac (hr−1) is the ventilation air change rate, and Ei (virus RNA copies
hr−1) is the average virus emission rate by an infectious individual. Combining (30) with (31)-(32), we finally find

b∞ =
ρi−QTss
hVac

Ei
Di

(33)

and
R0,∞ =

b∞
ε

=
ρi−QTr
hVac

Ei
Di
. (34)

Note that filtering effects due to the presence of face coverings (i.e., masks) can be included in the expressions
above to lower the dosage and emission rates estimates. We also note that, in addition to the initial fraction i−, the
RHS of (34) is proportional to two dimensionless groups, one that is process and operation-dependent ρQ

hVac
and

another that depends on physiological and biological conditions TrEi

Di
.

Equation (34) is an expression for the prefactor to the infection rate dependence for conditions of enclosed
environment and a short duration event. Therefore, it is the equivalent expression to (7) for the SIR model. How-
ever, the prefactor R0,∞ is proportional to the initial fraction of infected population, i−, thus underscoring the
different kinetics involved. It is the first such relation derived to our knowledge and complements its counterpart
expression for the one-to-one kinetic rate expression in (7) . For completeness, we also note that for consistency in
terminology we could use R0,1 to denote the R0 in the SIR model (which has the one-to-one stoichiometry of (1),
thus m = 1) but have elected not to, in order to avoid confusion.
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Figure 1. The effect of the duration of the event on the value of R0, for three different values of i−c∗ .

2.3 Super-Spreader Events

Consider, now, super-spreader events. To generate quantitative estimates for b∞ and R0,∞, we assume the
following conditions consistent with COVID-19 super-spreader events. Prior work suggests that infectious indi-
viduals can emit well over 100 quanta (infectious doses Di) per hour when actively vocalizing [5, 12]. We assume
a 50% duty cycle such that the average normalized emission rate is Ei/Di ≈ 50 hr−1. We further assume: limited
spatial distancing (ρ ≈ 0.25 m−2); an average room height (h = 2.5 m); low ventilation rates (Vac = 2 hr−1);
a moderate respiration rate (Q = 0.36 m3hr−1); and no facial coverings. For Tss = 5 hr and Tr = 336 hr, this
yields b∞ = 4.5i− and R0,∞ = 302i− (e.g., R0,∞ = 30.2 for i− = 0.1). If we interpret R0,∞ as the reproduction
parameter for super-spreader events in enclosed environments, the above findings are consistent with the expecta-
tion that super-spreader events have large values of the reproduction parameter. For example, for i− = 0.1 and
s− = 0.9, the final fraction of infected population is i+ = 0.45, more than four times the initial over that very
short period of time. The corresponding number for i− = 0.01 is 0.043, again, more than a four-fold increase.

Next, we consider if and how one could apply the traditional SIR model for enclosed environment and short
duration event conditions, even though its kinetics are different. To do this we combine (21), (24) and (25) to find

exp[c∗b1] =
c∗

i−
exp

(
D

Di

)
− s−
i−
. (35)

Assuming b1 now represents the cumulative action of R0 up to time τ = (t − t∗)/ε during the event, the above
expression can be differentiated with respect to time to yield

R0(t− t∗) =
R0,∞(

c∗ − s− exp
(
− D
Di

)) (36)

Because D varies with the duration of the event, this expression is also time-varying, thus demonstrating that the
SIR model is intrinsically unsuitable for describing the process. At the onset of the event, we have

R0(0) =
R0,∞

i−
=

ρQ

hVac

TrEi
Di

, (37)

which for the parameters above corresponds to a large value of about 302. As the event continues, however, R0

decreases monotonically. In a more compact notation, we can then rewrite (36) as

R0(∆te)

R0(0)
=

i−
(c∗ − s− exp(−i−R0(0)∆te))

(38)

where we have used the dimensionless event duration ∆te = Tss

Tr
= ε. Figure 1 shows that the value of R0

decreases monotonically, asymptotically stabilizing to

R0(∞)

R0(0)
=
i−
c∗

(39)

The fact that R0 is not a constant, but varies with the duration of the event, is a demonstration that the infection
kinetics during the event are not accurately captured with a linear dependence of the infection rate on i, as assumed
in the SIR-type model, but rather require the different interpretation along the lines suggested in (27).

One concludes that use of the standard SIR model under super-spreader events will lead in general to a
value of R0 that depends on the event duration, suggesting that the enclosed-room kinetics may not be properly
captured. The appropriate approach for such cases would be to keep the dependence on I fixed at the initial
infection conditions, in which case one obtains a revised and more appropriate constant value, R0,∞.
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3 Concluding Remarks

In this paper, we focused on obtaining an understanding of the reproduction parameter R0. We showed that
the traditional assumption, inherent to the SIR model, that infection occurs by one-to-one interaction between an
infected and a susceptible individual, fails to capture events where the interaction is by one to many (m) individuals
(e.g., in enclosed environments). We provided an approach that models such different interactions by proposing
a different reaction-like model stoichiometry, described in (26). This approach was used to model super-spreader
events (m � 1) and can also be generalized to a model that captures finite m kinetics. We will present the
results of such an analysis in a forthcoming publication. Despite its lack of applicability, the traditional SIR model
can still be used to model a super-spreader event, if one accounts for the fact that R0 will be time-dependent.
Note that this time dependence is not physical, but rather it enables a fit to the predictions of a model with the
correct physicochemical infection characteristics. We showed that the impact of an enclosed environment event
is significant such that the initial value of the reproduction number R0 is substantial (O(100)). Using a well-
mixed room model and a different rate dependence on the infected fraction we demonstrated that such behavior
is indeed expected for physicochemical, operational, and physiological conditions representative of known indoor
COVID-19 super-spreader events. The impact of super-spreader events to an epidemic is substantial at its earlier
stages, acting as a catalyst for nucleating new infections with potentially measurable effects on the approach to
herd immunity. The effect of other kinetics, corresponding to finite values of m is currently under further study.
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