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Abstract. This paper proposes a coupling strategy between the finite element method (FEM) and meshfree meth-
ods belonging to the family of Smoothed Point Interpolation Methods (SPIMs), to analyse two-dimensional prob-
lems with scalar damage. Starting from a model that is fully discretised by the FEM, the proposed strategy is
capable to identify the regions where nonlinear phenomena occour, and to convert the FEM mesh to an SPIM
discretisation in such regions, in order to obtain a coupled FEM-SPIM model. When the FEM mesh is replaced,
the SPIM discretisation is built using the original FEM nodes and additional nodes, in order to improve the ap-
proximation in the nonlinear regions. The characteristics of the proposed approach are illustrated with a set of
numerical simulations, comparing the results of the coupled model with the results of full FEM and SPIM models.
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1 Introduction

The finite element method (FEM) is one of the most important numerical methods employed in structural
analysis due its stability, efficiency and accuracy. However, it is a mesh-dependent method, and it can present some
drawbacks in some kind of analyses. On the other hand, meshfree methods build their approximation functions
in terms of nodes, and this feature facilitate the discretisation of the domain. These methods however, usually are
more computationally expensive that the standard FEM.

There are different types of meshfree methods in the literature. According to Belytschko et al. [1], the stating
point of meshfree was the smoothed particle hydrodynamics (SPH) method, presented by Gingold and Monaghan
[2] and Lucy [3] in 1977. From this point on, many other methods were developed, as the element free Galerkin
(EFG) method, proposed by Belytschko et al. [4], the point interpolation method (PIM), proposed by Liu and Gu
[5] and the smoothed point interpolation methods (SPIM) developed by Liu and Zhang [6].

In an attempt to take advantage of the qualities of FEM and meshfree methods, several researchers proposed
to couple them, and the present work proposes an automated coupling between the FEM and the SPIM, aiming to
model two-dimensional problems with scalar damage. The SPIM will substitute the FEM based on the singularity
of the acoustic tensor and additional nodes will be added in order to improve the meshfree approximation. To
illustrate this approach numerical simulations are presented, in order to point out the behaviour when compared to
full FEM and meshfree models.

2 Smoothed point interpolation methods

The displacement field u(x) at a point x, in meshfree methods, can be approximated as

u(x) =

n∑
i=1

φi(x)ui, (1)

where n is the number of nodes, φi is the nodal shape function and ui is the nodal displacement.
SPIM strategies use point interpolation methods (PIM), based on polynomial or radial basis functions (RBF),

to construct the shape functions. Liu and Gu [5] developed the method using polynomial functions, referred to as
PIM. Wang and Liu [7] proposed the use of radial basis, resulting in the radial point interpolation method (RPIM).
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Liu and Gu [8] and Wang and Liu [9] combined both basis and formulated the radial point interpolation method
with polynomial reproduction (RPIMp). The three shape functions are obtained from an interpolation resulting in
the Kronecker delta property, making it possible a direct imposition of the essential boundary conditions.

2.1 RPIM

Equation 1 can be rewritten using the RPIM as

u(x) =
[
RT (x) pT (x)

]
G−1

u
0

 , (2)

where the shape function φ(x) =
[
RT (x) pT (x)

]
G−1, R is the radial basis functions, p is the monomials of

the polynomial base and G is the combined moment matrix.
In this work the following exponential radial function was adopted to build the radial basis functions:

Ri(ri) = exp
(
−c r2i

)
, (3)

where ri =
√

(x− xi)
2
+ (y − yi)

2 is the distance between x and the node i, and c is the shape parameter.

2.2 Smoothing domains construction

SPIM strategies are based on smoothed derivatives, which are calculated using the concept of smoothing
domains [6]. To construct them the problem domain is divided into a set of smoothing domains, which are usually
created using triangular background cells. The smoothing domains must satisfy two requirements: they must cover
the entire problem domain, and there must be no gaps or overlaps between them. Different SPIM models can be
constructed based on: nodes (NS-PIM) [10], edges (ES-PIM) [11] or cells (CS-PIM) [12], as shown in Fig. 1.

(a) Node-based (b) Edge-based (c) Cell-based
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Background cells
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Figure 1. Smoothing domains

2.3 T-schemes for nodes selection

The same background cells used to build the smoothing domains can also be used to select the nodes of the
support domain at each integration point. Triangular background cells are usually adopted in SPIM strategies, thus
allowing the use of the so-called T-schemes.

Among the various existing schemes, this work focuses on the following: T3 scheme, edge-based T4 scheme
(or simply T4 scheme, from now on), and T6/3 scheme. They are illustrated in Fig. 2, where the different colours
indicate the support nodes for the highlighted integration point.

(a) T3 scheme (b) T4 scheme (c) T6/3 scheme

Node

Support nodes

Integration point

Background cells

Figure 2. Local support nodes using T-schemes
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3 Automated coupling of finite element and meshfree methods

The automated coupling method relies on the singularity of the acoustic tensor to identify the nonlinear
regions that will be converted to SPIM. The SPIM discretisations are built considering the original FEM nodes and
additional nodes, in order to improve the approximation in the nonlinear regions.

3.1 SPIM-FEM coupling

The key point of every coupling strategy is to guarantee the compatibility of the approximation in the tran-
sition zone. In the case of SPIM methods, the coupling can be performed directly, because the FEM and SPIM
shape functions possess the Kronecker delta property. A similar approach was proposed in a paper by Zhang et al.
[13], coupling the RPIM with FEM. Figure 3 illustrate a simplified one-dimensional coupling between FEM and
RPIMp [14].

Meshfree node

Coupled node

FEM node

Meshfree domain FEM domain

Figure 3. Coupled shape functions - RPIMp-FEM

3.2 Acoustic tensor

The acoustic tensor is given by

Q = (n ·E · n), (4)

where n is a normal unit vector and E is the constitutive tensor.
Usually to determine the initial formation of a weak discontinuity, the singularity of acoustic tensor is em-

ployed. Thus, the eq. (4) can be rewritten by

det(Q) = det(n ·E · n) = 0. (5)

Using this approach it’s possible to detect regions that should be converted to SPIM due to the onset of
nonlinear phenomena. It’s worth it to note that the singularity of the acoustic tensor is detected at the single
integration points. In order to avoid the substitution of just one element at the time, when the singularity is
detected for a certain element, all the elements within a certain region are also replaced by an SPIM discretisation.
The elements that must be replaced are the ones that fall within a circular region centered at the centroid of the
detected element. The radius of such region is assumed to be equal to the average size of the detected element
multiplied by a scale factor, which in this work as been assumed as 2. More details regarding the numerical
evaluation of the singularity of the acoustic tensor can be found in the work by Fioresi [15].

4 Scalar damage models

The behaviour of quasi-brittle materials during a loading-unloading process can be described with elastic-
degrading models, where the material elastic properties progressively degrades as the strains exceed certain thresh-
old values. A feature of these models is the existence of a total relationship between stresses and strains, which
can be expressed by

σ = ÊSε, ε = (ÊS)−1σ, (6)

where σ is the stress tensor, ε is the strain tensor and ÊS is the secant constitutive operator. Disregarding the micro
cracks closure-reopening effects, the secant operator remains constant within an unloading-reloading process.

Among the different elastic-degrading models, scalar damage models are the simpler ones. Their secant
constitutive operator is expresses by [16–18]

ÊS(D, Ê0) = (1−D)Ê0, (7)

where D is a scalar damage variable, assumed to vary from 0 (undamaged material) to 1 (completely damaged
material), and Ê0 is the initial constitutive operator. For a scalar damage model, a common choice for the loading
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function is represented by the following additive decomposition

f(ε, D) = εeq(ε)−K(D) 6 0, (8)

where εeq(ε) is an equivalent strain, and K(D) is a historical parameter that is representative of the maximum
level of strain reached during the loading process. The damage variable is usually prescribed as a function of the
equivalent strain; in this work the following exponential damage law is being adopted

D(εeq) = 1− K0

εeq
(1− α+ αe−β(εeq−K0)), (9)

where K0 is a threshold value for the equivalent strain, and α and β are parameters that define the maximum
allowed damage level and the damage evolution intensity, respectively. In this work, the Mazars scalar damage
model [19, 20] was considered, and the equivalent deformation is given by

εeq =

√√√√[ 3∑
k=1

(< ε(k) >+)2

]
, (10)

where ε(k) is the kth eigenvalue of the strain tensor and < ε(k) >+= (ε(k) + |ε(k)|)/2 its positive part.

5 Numerical simulations

The present section points out two different numerical simulations, a L-shaped panel and a three point bend-
ing test. These simulations illustrate the automated FEM-SPIM coupling and compare the results with models
completely discretised by FEM or SPIM over the entire domain (or simply full FEM and full SPIM, from now on).

All the full FEM models were discretised with three-nodes triangular elements, and these meshes were
adopted as background cells for the construction of the meshfree discretisations. The meshfree shape functions
were constructed with the RPIMp using the exponential radial function (eq. (3)) with c = 0.002 and 3 polynomial
terms. The support nodes were selected using T4 scheme for cell-based models, and the T3 and T6/3 schemes for
node- and edge-based models. The system of nonlinear equations was solved by the Newton-Raphson method,
together with the displacement control method, adopting as control point the node where the force F is applied,
and controlling its vertical displacement. All simulations were performed using the secant approximation of the
constitutive operator.

5.1 L-shaped panel

Figure 4a illustrates the L-shaped panel and Fig. 4b shows the discretisation used in these analyses. This
panel has a thickness of 100 mm and it is subjected to a reference load F = 7000 N. A vertical displacement
increment of 7.5 × 10−4 mm, and a tolerance of 1.0 × 10−4 for the convergence in displacement were adopted.
The same material parameters presented by Winkler et al. [21] were adopted here: E = 25850 MPa and ν = 0.18.
The nonlinear behaviour was reproduced with the exponential damage law of eq. (9), with: α = 0.95, β = 1100
and K0 = 1.12× 10−4.

F

250

2
5
0

500

5
0
0

(a) Geometry (measures in mm) (b) Discretisation

Figure 4. L-shaped panel

The results are illustrated in Fig. 5, where the vertical displacement of the control point is plotted against
the load factor. As it can be seen, the coupled models improve the behaviour of the full meshfree models in the
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softening branch, the cell and edge-based methods presented the results a little bit softening than experimental
test, but the maximum load was very close for both, this branch for the coupled models was influenced for both
methods, improving the node-based substantially. The linear branch of the coupled models is governed to the FEM,
because the first change of FEM to SPIM occour in approximately 0.75 of the load factor. As expected, the region
substituted for SPIM at the end of simulation, presented in the Fig. 6, is where the test present the higher damage
values, based on this it is possible understand the improvement obtained in the coupled models when compared
with full models. Another interesting point is regarding the T6/3 scheme, that for the edge-based coupled model
continuous similar to full model and for the node-base coupled model the equilibrium path was close to T3 scheme.
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Figure 5. L-shaped panel - Equilibrium paths
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Figure 6. L-shaped panel - Final meshes of coupled models

5.2 Three-point bending test

The beam illustrated in Fig. 7a has a thickness of 50 mm and it is subjected to a reference load F = 800 N.
The discretisation employed to perform the simulations is presented in Fig. 7b, and the material parameters was
adopted from a paper by Petersson [22]: E = 30000 MPa and ν = 0.2. The nonlinear behaviour was reproduced
with the exponential damage law of eq. (9), with: α = 0.95, β = 1100 and K0 = 1.1 × 10−4. A vertical
displacement increment of −5 × 10−3 mm, and a tolerance of 1.0 × 10−4 for the convergence in displacement
were employed.

In this simulation, the full cell and edge-base models with T3-scheme reproduced the experimental test very
well, however the full node-based models didn’t present good results, as happened in the section 5.1. The coupled
models improve the results again, mainly for node-based models, that presented a equilibrium path very close to
the experimental test. The maximum load of the cell and edge-based coupled models was similar to the one of
the experimental test and the linear branch for all coupled models was governed by the FEM, while the softening
branch was governed by both FEM and SPIM. Figure 9 points out the last configuration obtained in the coupled
models, where again the meshfree region is located where happened the higher damage values.

6 Conclusions

This work presented an automated coupling between the FEM and the SPIM models to study physically
nonlinear problems with scalar damage. The automated coupling approach was used to reproduce two experimental
test and the obtained results were compared with full FEM and SPIM models. In both simulations the coupled
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Figure 7. Three-point bending
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Figure 9. Three-point bending - Final meshes of coupled models

models presented results in good agreement with the expected experimental results. The linear branch of the two
simulations in the coupled models was governed by the FEM, because the conversion of FEM to SPIM happened
just above the middle of the branch. For the node-based models, the coupling considerably improved the results in
both the simulations, mainly in the softening branch. The T6/3 scheme presented results a little more rigid in the
softening branch independent of the model. In particular, the automated coupling models adopted in this work was
capable to improve the behaviour of the full meshfree models independent of the T-scheme applied. Anyway, the
authors believe that this approach can open another possibilities for further researches.
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