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Abstract. The present work investigates the application of meshfree Point Interpolation Methods (PIM) to the
phase-field modelling of brittle fracture. The phase-field modelling is an efficient tool for the simulation of complex
cracks. Within this approach, a crack is modelled as a diffuse crack where a length scale parameter controls the
size of diffusive region and the value of phase-field indicates the integrity of the material. Point Interpolation
Methods can be based on polynomial or radial shape functions. These shape functions possess (i) the Kronecker
delta property, that allows a more simple imposition of essential boundary conditions, (ii) the compact support
property and (iii) the partition of unity property. This paper discusses the computational aspects of the application
of the PIM strategy to the phase-field modelling, and presents numerical simulations to illustrate the characteristics
of the proposed approach.
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1 Introduction

The phase-field is an important method for the modelling of complex cracks. This approach was proposed
by Francfort and Marigo [1] as the reformulation of a potential energy minimization problem based on Griffith’s
theory [2]. The crack is modelled as a diffuse entity and the crack initiation, propagation and branching are
obtained directly from the solution of the crack phase-field and mechanical equilibrium equations. Anisotropic
models, which divide the energy associated to traction and compressive regions, were proposed to prevent cracks
in compressive regions of the model [3].

In recent works, the combination of meshfree mesthods and phase-field modelling has been proposed [4–
6]. In these methods, the nodes are not connected through elements and have the advantage of not needing to
implement conforming meshes and not presenting the issue of distortion of elements. The approximation functions
are built using a set of nodes in the neighbourhood of the point, called support nodes.

This paper investigates the use of the meshfree Point Interpolation Method (PIM) for the analysis of quasi-
brittle problems with the phase-field approach. The polynomial and radial shape functions are investigated in two
numerical examples. The simulations are performed using the INSANE (Interactive Structural ANalisys Environ-
ment) 1.

2 Phase-field modelling of brittle fracture

In the phase-field modelling, the crack present in a domain Ω is modelled as a diffuse entity, as shown in
Fig. 1. A length scale parameter l0 defines the width of the diffuse region and the scalar value of the phase-field
indicate the state of the material, being 0 for intact material and 1 for completely broken material.

The diffuse crack is represented in terms of a crack surface density function, expressed by:

γ(φ,∇φ) =
1

2l0
φ2 +

l0
2
|∇φ|2 (1)

1More information on the project can be found at https://www.insane.dees.ufmg.br/; the development code is freely available at the Git
repository http://git.insane.dees.ufmg.br/insane/insane.git.
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Figure 1. Phase-field modelling for diffuse crack.

The total energy functional of the body is given by:

Et =

∫
Ω

ψ(ε(u), φ)dV +

∫
Ω

Gcγ(φ,∇φ)dV −
∫

Ω

b · udV −
∫
∂Ω

t · udA (2)

where Gc is the fracture energy, b is the body forces and t is the surface forces.
The term ψ(ε(u), φ) is the elastic strain energy density, that is related to the phase-field through the function

g(φ) called degradation function, that in this paper is given by:

g(φ) = (1− φ)2 + k (3)

where k is a small value used to prevent numerical singularities. In the isotropic model [7], the function g(φ) is
applied in all domain as the Eq. 4:

ψ(ε(u), φ) = g(φ)ψ0(ε) (4)

In the anisotropic models, to prevent cracks growth under compression, the function g(φ) is applied to the positive
part of the strain energy (ψ+

0 (ε)) as

ψ(ε(u), φ) = g(φ)ψ+
0 (ε) + ψ−

0 (ε) (5)

Different authors proposed the decomposition of the strain energy. In this paper, the spectral decomposition of the
strain tensor discussed by Miehe et al. [3] is used.

The governing equations of the phase-field problem in the weak form are:
∫

Ω
σ : δεdV = δPext∫

Ω
[2(1− φ)Hδφ+ Gc

l0
φδφ+Gcl0∇φ · ∇δφ]dV ≥ 0

(6)

where the term H is the historical variable discussed by Miehe et al. [3] and it is defined as the maximum strain
energy in the traction region.

3 Point Interpolation Methods

The PIM obtains its approximation by letting the interpolation function pass through the function values at
each scattered node within the support domain [8]. This method was proposed by Liu and Gu [9], where polynomial
functions were used. To guarantees the existence of the inverse of the moment matrix present in the formulation,
Wang and Liu [10] suggested the use of radial basis functions, originating the Radial Point Interpolation Method
(RPIM). The RPIM with pure radial functions is not (polynomial) consistent and has a problem passing the stan-
dard patch tests, meaning that it fails to reconstruct the linear (polynomial) field exactly [8]. Wang and Liu [11]
proposed adding polynomial basis functions to restore the consistency of RPIM shape functions, resulting radial
point interpolation method with polynomial reproduction (RPIMp).

All these shape functions possess the Kronecker delta function property, which allows for an easy treatment
of essential boundary conditions. Besides this property, they have the partition of unity and the compact support
domain, and don’t rely on weight functions as in the Moving Least Square approach.

The PIM shape function for a node k at a point x is given by:

Nk(x) =

n∑
i=1

Pi(x)(Pm
−1)ik. (7)
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where n is the number of nodes in the neighbourhood of x, Pi are the polynomial basis functions and Pm is the
moment matrix.

PTm = [p(x1),p(x2),p(x3), ...,p(xn)] (8)

In this shape function, 3 or 6 polynomial terms are used, depending on the number of support nodes.
The RPIMp shape function for a node k at a point x is given by:

Nk(x) =

n∑
i=1

Ri(x)Saik +

m∑
j=1

Pj(x)Sbjk. (9)

where n is number of nodes in the neighbourhood of x, m is a number of monomials composing the polynomial
basis, Ri are the radial basis functions, Pj are the polynomial basis functions, and the matrix Sa and Sb are:

Sa = R−1
Q [1−PmSb] = R−1

Q −R−1
Q PmSb. (10)

Sb = [PTmR−1
Q Pm]−1PTmR−1

Q (11)

where RQ is the moment matrix of the radial function and Pm is the moment matrix of the polynomial function.
In this paper, the following exponential radial function with the scaled distance Ri(r∗i ) and polynomial functions
with 3 polynomial terms are adopted.

Ri(r
∗
i ) = exp(−cr∗2

i ) (12)

where r∗i is the scaled distance and c is a shape parameter which controls the decay rate of the function. The scaled
distance is adopted in order to obtain a function less dependent on the nodal spacing

r∗i =
ri

max(r)
ri =

√
(x− xi)2 + (y − yi)2 (13)

where ri is the distance between the point x and the i-th support node and max(r) is the maximum ri found in the
support domain.

The construction of the shape functions at each point of interest x require the use of a number of support
nodes in the neighbourhood of that point. This support nodes can be obtained using the T-schemes for nodes
selection. T-schemes are based in cells of triangular type, as shown in the Fig. 2. In this work, T3 and T6/3
schemes are used.
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Figure 2. T-schemes for nodes selection.

4 PIM discretisation of the phase-field model

The displacement field u and phase-field φ are approximated using PIM shape functions as

u(x) =

SN∑
I=1

N I(x)dI φ(x) =

SN∑
I=1

NI(x)aI (14)

where SN are the support nodes, dI and aI are the nodal values of the displacements and phase-field, respectively.
The strain tensor and gradient of the phase-field are given by
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ε(x) =

SN∑
I=1

Bu
I (x)dI ∇φ(x) =

SN∑
I=1

Bφ
I (x)aI (15)

where

Bu
I (x) =


Nu
I,x 0

0 Nu
I,y

Nu
I,y Nu

I,x

 Bφ
I (x) =

 Nφ
I,x

Nφ
I,y

 (16)

where NI,x and NI,y are the derivatives of the shape functions.
Replacing the expressions above in to Eq. 6 results in the following:∫

Ω

(Bu)TσdV = fext (17)

∫
Ω

2(1− φ)H(Nφ)T dV +

∫
Ω

(
Gc
l0
φ(Nφ)T +Gcl0(Bφ)T∇φ)dV ≥ 0. (18)

For the numerical integration, one integration point is considered in the center of each cell and the staggered
solution scheme [12] is used to solve the Eq. 17 and 18.

5 Numerical simulations

This section illustrates the numerical results obtained by PIM to the modelling of the phase-field of brittle
fracture. Two examples present in the literature are analysed. For each problem, PIM and RPIM shape functions
were adopted, as well as T3 and T6/3 schemes for nodes selection. For comparison purposes, the results obtained
with the FEM were presented, performed using the same triangular meshes of the cells.

5.1 Shear test

This example is characterised by a crack evolution only in the traction region of the problem. The shear test
illustrated in Fig. 3(a) was simulated by Miehe et al. [3], using an anisotropic model; the same model has been
adopted here in combination with the PIM approach. The material was modelled considering a Young’s modulus
E = 210 kN/mm2, Poisson’s ratio ν = 0.3, critical energy release rate Gc = 0.0027 kN/mm and length scale
parameter l0 = 0.015 mm. The nodal distribution, FEM mesh and background mesh are shown in Figs. 3(b) and
3(c).
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Figure 3. Shear test: (a) Geometry, loading and boundary conditions, (b) Nodal distribution, and (c) FEM mesh
and background mesh.

The nonlinear process was performed by the direct displacement control method, considering increments of
∆u = 1x10−4 mm of the top edge in the horizontal direction for all the steps. The load-displacement curves are
shown in Fig. 4 together with the reference solution by Miehe et al. [3]. For all the strategies, the peak load
factor was greater than the one of the reference. In the authors opinion, this behaviour is most probably due to the
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differences between the current and reference meshes, since the phase-field approach is quite sensitive to the mesh
density as observed in Patil et al. [13]. For the T3 scheme, the curves obtained with FEM, PIM and RPIMp are the
same. For the T6/3 scheme, the strategies fail to complete the analysis.
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Figure 4. Load-displacement curve of the shear test.

The contour plots of the nodal values of the phase-field for the RPIM-T3 are illustraded in Fig. 5. It is possible
observe that this strategy is able to indicate the nucleation and propagation of the cracks presented in Miehe et al.
[3].

(a) (b) (c)

Figure 5. Phase-field contour plots for the shear test with PIM-T3. Displacements of (a) 1.01x10−2 mm, (b)
1.20x10−2 mm and (c) 1.53x10−2 mm.

5.2 Bi-material tensile test

This example shows the ability to model the crack branching phenomenon. The bi-material tensile test
illustrated in Fig. 6(a) was simulated by Molnar and Gravouil [14]. The “Material 1” indicated in Fig. 6(a) is
characterised by a Young’s modulus E = 377 kN/mm2, Poisson’s ratio ν = 0.3, critical energy release rate Gc
= 0.01 kN/mm and length scale parameter l0 = 0.3 mm, while the “Material 2” is characterised by a Young’s
modulus E = 37.7 kN/mm2, Poisson’s ratio ν = 0.3, critical energy release rate Gc = 0.001 kN/mm and length
scale parameter l0 = 0.3 mm. Similar to the Molnar and Gravouil [14], the isotropic model is adopted. The nodal
distribution, FEM mesh and background mesh to T-schemes are shown in Figs. 6(b) and 6(c).

The nonlinear process was performed by the direct displacement control method, considering increments of
∆u = 2x10−4 mm of the right edge in the horizontal direction for all the steps. The load-displacement curves are
shown in Fig. 7 together with the reference solution obtained by Molnar and Gravouil [14]. The curves obtained
for all strategies are similar to the reference curves, except for the different displacement values corresponding to
the first fracture progation between Figs. 8(a) and 8(b), and the last propagation illustrated in Fig. 9.

The contour plots of phase-field for the PIM-T3 are illustraded in Fig. 8. It is possible observe that crack
propagates in the direction of the initial crack in the lower material up to the the transition zone. Then, the crack
branching occurs and two cracks propagate along the interface. As pointed out by Molnar and Gravouil [14] the
branching occurs because the energy required for the branch is less than the energy required to propagate through
the tougher material. Fig. 9 presents the final step of the analysis, where the crack propagates through the tougher
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material and the force is abruptly reduced. These results are similar to those presented in Molnar and Gravouil
[14].
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Figure 6. Bi-material tensile test: (a) Geometry, loading and boundary conditions, (b) Nodal distribution, and (c)
FEM mesh and background mesh.
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Figure 7. Load-displacement curve of the bi-material tensile test.

6 Conclusions

This paper presented the application of the PIM meshfree method for discretisation of the phase-field mod-
elling for fracture. PIM and RPIMp shape functions were used with T3 and T6/3 schemes for support nodes
selection. Two numerical simulations were presented comparing the proposed strategies with FEM and the refer-
ence solution. In the two examples performed, the load-displacement curves that were obtained presented a good
agreement with the results of the literature and the results obtained with T3 schemes were the same as the ones
obtained with the FEM. In the case of the shear test example, the strategies with T6/3 schemes presented curves
with instablities. It is possible to observe that in both simulations, the contour plots for the phase-field are similar
to those of the literature. The use of the PIM meshfree method with phase-field modelling was able to simulate
crack nucleation, propagation and branching.
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(a) (b) (c) (d)

Figure 8. Phase-field contour plots for the bi-material tensile test with RPIMp-T3. Displacements of (a) 0.086
mm, (b) 0.0872 mm, (c) 0.12 mm and (c) 0.194 mm.

Figure 9. Final fracture of the bi-material tensile test.

References

[1] G. A. Francfort and J. J. Marigo. Revisiting brittle fracture as an energy minimization problem. J Mech Phys
Solids, vol. 46, 1998.
[2] A. A. Griffith. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser, vol. 221, pp.
163–198, 1921.
[3] C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models of fracture:
Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engi-
neering, vol. 83, pp. 1273–1311, 2010.
[4] J. Wu, D. Wang, Z. Lin, and D. Qi. An efficiente gradient smoothing meshfree formulation for the fourth-order
phase field modeling of brittle fracture. Computation Particle Mechanics, vol. 7, pp. 193–207, 2019.
[5] Y. Shao, Q. Duan, and S. Qiu. Adaptive consistent element-free galerkin method for phase-field model of
brittle fracture. Computational Mechanics, vol. 64, pp. 741–767, 2019.
[6] P. Kasirajan, S. Bhattacharya, M. Arroyo, A. Rajagopal, and J. N. Reddy. Phase field modeling of fracture
in quasi-brittle materials using natural neighbor galerkin method. Computer methods in applie mechanics and
engineering, vol. 366, pp. 113019, 2020.
[7] B. Bourdin, G. A. Francfort, and J. J. Marigo. Numerical experiments in revisited brittle fracture. J Mech Phys
Solids, vol. 48, 2000.
[8] G. R. Liu. Meshfree Methods: Moving Beyond the Finite Element method. CRC Press, New York, 2009.
[9] G. R. Liu and Y. T. Gu. A point interpolation method for two-dimensional solids. International Journal for
Numerical Methods in Engineering, vol. 50, pp. 937–951, 2001.
[10] J. G. Wang and G. R. Liu. A radial point interpolation method for elastoplastic problems. In Fist International
Conference on Structural Stability and Dynamics, pp. 703–708, Taipei, Taiwan, 2000.
[11] J. G. Wang and G. R. Liu. A point interpolation meshless method based on radial basis functions. Interna-
tional Journal for Numerical Methods in Engineering, vol. 54, pp. 1623–1648, 2002.
[12] F. Zhang, W. Huang, X. Li, and S. Zhang. Moving mesh finite element simulation for phase field of fracture
and convergence of newton‘s iteration. Journal of Computational Physics, vol. 356, pp. 127–149, 2018.
[13] R. U. Patil, B. K. Mishra, and I. V. Singh. An adaptive multiscale phase field method for brittle fracture.
Computer Methods in Applied Mechanics and Engineering, vol. 329, pp. 254–288, 2017.
[14] G. Molnar and A. Gravouil. 2d and 3d abaqus implementation of a robust staggered phase-field solution for
modeling brittle fracture. Finite Elements in Analysis and Design, vol. 130, pp. 27–38, 2017.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021


	Introduction
	Phase-field modelling of brittle fracture
	Point Interpolation Methods
	PIM discretisation of the phase-field model
	Numerical simulations
	Shear test
	Bi-material tensile test

	Conclusions

