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Abstract. The design of bone scaffold involves the consideration of stress shielding which occurs when the
Young’s modulus of the implant is higher than the Young’s modulus of the bone it is replacing and therefore, bone
decay occurs in the surrounding tissue. It is therefore very important that the material is adequately adapted to the
properties of the surrounding tissue to allow for appropriate load transfer between the bone and the implant. There
are several studies to evaluate the occurrence of proper bone ingrowth in scaffold using bone remodelling models
and most studies assume an already existing scaffold design.

This work aims at combining meshless methods combined with the bone remodelling algorithm as a way to
develop optimized functional gradients of infill density for bone scaffold with the intent of obtaining mechanical
properties in the scaffold that will be compatible with bone tissue.

Keywords: finite element method, radial point interpolation method, natural neighbour radial point interpolation
method, bio-inspired remodelling algorithm, gyroid

1 Introduction

Bio-scaffold for tissue engineering is a growing application for cellular materials such as the gyroid foam.
The gyroid is a triply periodic minimal surface (TPMS) and its adaptation into a foam material presents adequate
mechanical properties to fix large bone defects [1, 2]. Thus, combined with adequate density gradients [3] from
structural optimization algorithms, it is feasible to match the mechanical properties of bone patch. In this work
the gyroid infill properties were obtained experimentally to obtain a law in the form of E = f(ρapp), so the
homogeneous properties of the material are considered in the optimization.

With regards to the use of bone remodelling and topology algorithms to develop and study bone implants,
there are several examples in the literature.

Ghaziani et al. [4] studied a bone growth through a bone remodelling algorithm to test the design of several
functionally graded material (FGM) prosthesis. The algorithm uses a strain energy density (SED) based approach,
where the density is updated according to the stimulus and Wu et al. [5] evaluated bone ingrowth in the scaffold
as a function of the mechanical stimulus. These approaches are concerned with the osteointegration of bone in
the implant, by considering previously defined scaffold designs. However, Harrysson et al. [6] in their study
mentioned the possibility of using optimization algorithms to develop non-stochastic mesh implants to improve
the properties of the hip stem prosthesis.

The approach in this work uses the optimization algorithms, which replicate the bone tissue distribution to
adapt the density gradient of the scaffold in a way that will mimic the human bone it is replacing.
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2 Materials and methods

2.1 Meshless methods

The two meshless methods applied in this work are the radial point interpolation method (RPIM) and the
natural neighbour radial point interpolation method (NNRPIM). While the FEM establishes nodal connectivity
through elements, the RPIM and the NNRPIM use different concepts, namely the concept of influence domains.

The RPIM obtains the influence domain by defining a set of nodes in the vicinity of an interest point. The
size and shape of the domain will heavily influence the performance of the method. The 3D problems analysed in
this work, considered an influence domain containing nd = 27 nodes.

For the NNRPIM, the concept of influence domains is replaced by influence cells which are obtained again
from the Voronoi diagram of the nodal distribution. Thus, using the Voronoi it is possible to establish for each
node discretizing the problem domain its natural neighbours (i.e., the geometrically closest nodes).

More information on the integration scheme of both methods can be found in [7].
Both the RPIM and the NNRPIM use the Radial Point Interpolators (RPI) technique to construct the inter-

polating shape functions. The RPI combines a radial basis functions with a polynomial basis functions. Thus,
considering an integration point xI with an influence-domain defined by XI = {x1, x2, ...xn} ∈ R3, any variable
field u(xI) can be interpolated at xI using eq. (1)

u(xI) = r(xI)Ta(xI) + p(xI)Tb(xI). (1)

The multiquadrics radial basis function is used as RBF, thus, r(xI) can be defined as eq. (2)

ri(xI) = (d2iI + (γŵI)2)p, (2)

where diI is the euclidean distance between a node and the interest point and ŵI is the integration weight of the

point. The MQ-RBF shape parameters γ and p, used in the RPIM were γ = 1.42 and p = 1.03 and in the NNRPIM
were γ = 0.0001 and p = 0.9999, which have previously been optimized for best performance [7].

The polynomial based used in the RPIM was linear p(x) = {1 x y z}T and the polynomial base used in the
NNRPIM was constant p(x) = {1}T

The vectors a(xI) and b(xI) represent the non-constant values that must be obtained in order to define the
shape function of xI . Applying eq. (1) to each node inside the influence domain and forcing Pa(xI) = 0, a set of
equations is obtained:  R P

PT Z

a(xI)

b(xI)

 = MT

a(xI)

b(xI)

 =

us

z

 . (3)

Thus, the vectors a(xI) and b(xI) are obtained and substituting into eq. (1)

uh = {r(xI)T p(xI)T}M−1
T

us

z

 = {φ(xI)T ψ(xI)T}

us

z

 , (4)

it is possible to obtain the RPI shape functions the vector φ(xI)T,

φ(xI) =
{
φ1(xI) φ2(xI) · · · φn(xI)

}
. (5)

2.2 Remodelling algorithm

It is assumed that the trabecular arrangement occurs in the direction of principal stress which corresponds to
an optimal configuration for stiffness maximization. This model was adapted by Belinha et al. [7] and combined
with meshless methods. The bone remodelling phenomenon is nonlinear. It is presented as a differential equation
where a temporal-spatial based functional ρapp(x, t) is minimized with respect to time:

∂ρapp(x, t)
∂t

∼=
∆ρapp(x, t)

∆t
=
(
ρmodel
app

)
tj
−
(
ρmodel
app

)
tj+1

= 0. (6)
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The temporal domain is discretized in fictitious time steps tj ∈ R where j ∈ N.
For a fictitious time step tj , the medium apparent density of the model is given by:

ρmodel
app = Q−1

Q∑
i=1

(ρapp)I , (7)

where (ρapp)I is the apparent density of the interest point xI , defined through ρI = g (σI), being g (σI) : R3 7→ R
.

g (σI) = max
(
{σ−1

1 (ρI) σ−1
2 (ρI) σ−1

3 (ρI)}
)
. (8)

The stresses σ1, σ2 and σ3 are the principal stresses, and σ−1
1 (ρI), σ−1

2 (ρI) and σ−1
3 (ρI) are the inverse

functions of the material law which correlates the apparent stress with the mechanical properties. So, it is possible
to obtain equations of the apparent density in an interest point as a function of the stress evaluated in that point.

Said correlations are applied to the points belonging to the following interval:

U(xI) ∈ [Um, Um + α ·∆U [ ∪ ]UM − β ·∆U,UM ] , (9)

which define the set of points being subject to the remodelling process, where Um is the minimum U and UM is
the maximum U verified. Growth and decay rate of the apparent density are represented by α and β, respectively,
and must be defined for each problem, as well as the control density ρcontrolapp . When equilibrium is achieved, the
remodelling stops.

∆ρ

∆t
= 0 ∧

(
ρmodel
app

)
tj

= ρcontrolapp . (10)

2.3 Homogenized material law

With the experimental results of tensile tests on specimens of the gyroid infill, it was possible to obtain a
homogenised Young’s modulus for several infill densities of the gyroid infill, which was then associated with the
apparent density of the specimen, considering that the density of bulk PLA (E = 3145 MPa) is ρ0 = 1.25g/cm3.
In the end, it was possible to develop a material law for gyroid foam cells correlating the Young’s modulus with
the apparent density

Egyr[MPa] = −482.65ρ3app + 938.34ρ2app + 27.693ρapp. (11)

With the results of experimental compression tests, it was also possible to obtain the ultimate compression
stress and correlate such value with the corresponding apparent density

σgyr
c [MPa] = −18.853ρ3app + 43.021ρ2app + 12.242ρapp. (12)

In the algorithm, it is with eq. (12) that the inverse functions referred in eq. (8) are obtained, and thus,
the apparent density in the points can be actualized. The mechanical properties to obtain the field variables are
obtained with eq. (11).

In order to allow a direct comparison of the mechanical behaviour of a structure fabricated with gyroid foam
and the same structure made of bone, the following bone tissue phenomenological law was considered [7]:

Ebone
cortical[MPa] = 68357.14ρ3app − 276771.43ρ2app + 386136.43ρapp − 177644.29, (13)
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Ebone
trabecular[MPa] = 805.86ρ2app + 721.61ρapp, (14)

σbone
c [MPa] = 20.3508ρ3app + 26.7984ρ2app, (15)

which was simplified to consider bone tissue as isotropic. As mentioned previously, the density level which marks
the threshold between cortical and trabecular bone is 1.3g/cm3.

2.4 Remodelling models and boundary conditions

Figure 1 shows the models and the boundary conditions used in the remodelling analysis. The applied loads
aim to replicate the most prevalent load case at the proximal femur [7]: the traction load F1 at the greater trochanter
(from the trochanter inserted tendons) and a compression load F2 at the femur head (from the hip joint). Since
at each stage, the design variables are brought to their elastic limit (according to eq. (12)), unitary forces were
applied, being that F1 corresponds to 1/3 of F2. For both models, the forces are applied as being vertical (only
applied along Oz). The base of the models was pinned. Moreover, it was defined that the base and the area where
F2 is applied are not going to be subject to remodelling, in both models.

x y

z

Model 1

Model 2

F1
F2 F1

F2

Remodelling 

area Remodelling 

area

Figure 1. Model 1 (structured), discretized into 3086 nodes and 2284 8-node hexahedral elements; and model 2
(realistic), discretized into 1969 nodes and 9112 4-node tetrahedral elements

The maximum density defined for the gyroid infill corresponds to an infill density of 85% and the minimum
density corresponds to an infill density of 10%, because the density of the filament which was used to characterize
the gyroid infill is ρ0 = 1.25g/cm3. The maximum, minimum and transition density values defined for the bone
model are correspondent to threshold values for the properties of bone [8].

The remodelling analyses are performed according to a strain energy density criterion, which is a criterion
for stiffness maximization. The remodelling parameters used for each of the models are shown in Table 1.

3 Results and discussion

The obtained density fields are shown in Fig. 2 for model 1 and Fig. 3 for model 2, for a mass of 50% of the
initial mass. Regarding the structure configuration, both the gyroid material law and the bone tissue material law
obtained similar density fields, meaning that the porosity distribution is equivalent. Therefore, it can be evaluated if
the functional gradients, naturally occurring in bone tissue, can be mimicked by other materials. This is important
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Table 1. Remodelling parameters used in the analysis

Model Material β α
ρapp[g/cm3]

maximum threshold minimum

1
Gyroid infill

0.05 0.01
1.06 - 0.125

Bone tissue 2.1 1.3 0.1

2
Gyroid infill

0.025 0.01
1.06 - 0.125

Bone tissue 2.1 1.3 0.1

since bone tissue scaffold design must also include the study of permeability and porosity (which are important for
cell proliferation) and thus, viability of the implant [1, 2, 9].

Moreover, the structure evolved into a configuration that was expected to occur given the load case which
leads to bending of the femoral stem.

FEM RPIM NNRPIM 
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Figure 2. Comparison of gyroid and bone tissue density distribution for a volume fraction of 50% on model 1

The stiffness coefficient K is evaluated as a measure of the scaffold modulus in comparison to the bone it is
replacing. With the results of the gyroid scaffold, the values for an implant with the same geometry and built with
Ti alloy were approximated through eq. (16), where ETi is the Young’s modulus of titanium (ETi = 119 GPa),
EGyr is the Young’s modulus of the scaffold material, in this case, PLA (EGyr = 3145MPa) and KGyr is given by
eq. (17)

KTi =
ETi

EGyr
KGyr, (16)

K[N/mm] =

∑nt

i=1 (f topz )i
1
nt

∑nt

j=1

(
dtopz

)
j

, (17)

where in its turn, nt is the number of nodes, at the top of the femur head where F2 is applied, fz is the vertical
force applied to each of those nodes and dz is the vertical displacement of those nodes.

Thus, the plots in Figure 4 were obtained, where it is possible to compare, as a function of apparent density,
the difference in modulus of a titanium scaffold and bone tissue.
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Figure 3. Comparison of gyroid and bone tissue density distribution for a volume fraction of 50% on model 2
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Figure 4. Comparison of the stiffness coefficient of the titanium (Ti) scaffold with bone tissue

Analysing Fig. 4, the stiffness of the titanium scaffold is lower than the stiffness of the bone it is replacing,
and thus, it is an adequate material to manufacture the gyroid scaffold. Similar conclusions had been obtained in
the study by Bobbert et al. [2]. Due to the properties of the homogenized gyroid model, the stiffness coefficient
first decreases slightly and then, decreases more abruptly. Thus, when ρavgapp/ρ0 reaches 0.6, it is observed a high
rate of stiffness loss in the material as the apparent density decreases.

A relevant aspect of the study cannot be obtained by scaling the PLA gyroid scaffold into a Titanium gyroid
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scaffold which is the load bearing capability of the implant. Even though the stiffness is lower than bone which
allows for proper bone growth, it is necessary that the loads in the human body can be supported by the scaffold.
Previous studies in the literature indicate that generally, the apparent strength of scaffolds is sufficient to fill the
requirements [1, 2].

4 Conclusions

As its main contribution, this study proposes a framework to obtain functionally graded gyroid foams that can
be used to manufacture bone replacement. Here, it is presented a phenomenological material law for PLA gyroid
foams that can be scaled to other materials showing a similar linear elastic behaviour. The proposed material
law homogenizes the PLA gyroid foam mechanical behaviour, allowing to obtain (as a function of the apparent
density of the PLA gyroid foam) the homogenized Young’s modulus and ultimate compression stress. It was found
that both remodelling algorithms (bio-inspired and bone tissue) achieve similar density patterns, indicating that
the bio-inspired remodelling algorithm is suited to approximate functionally graded foam distributions resembling
physiological solutions. Meshless methods achieved solutions that are similar to the FEM with the remodelling
algorithm.
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