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Av. Pres. Antônio Carlos, 6627 - Pampulha, 31270-901, MG/Belo Horizonte, Brazil
karlaf@ufmg.br
2Dept. of structural engineering, Federal University of Minas Gerais
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Abstract. When compared with the Finite Element Method (FEM), the Isogeometric Analysis IGA presents as
advantages the exact representation of the problem geometry, the possibility of using the same basis functions to
describe the geometry as well as the solution field and a straightforward and automatic scheme to refine the mesh.
The eXtended Isogometric Analysis (XIGA) enlarges the approximate space of IGA incorporating customized
functions, by the enrichment strategy of Generalized/eXtended Finite Element Method (G/XFEM). The present
work evaluates the performance of the eXtended Isogeometric Analysis (XIGA) in the context of the Linear Elastic
Fracture Mechanics. Several parameters related with the enrichment strategy, such as the region to be enriched,
the number of nodes enriched, the type of enrichment functions are combined with the special features of IGA and
the behavior of the solution is investigated. This work is a first step of the expansion of the INSANE (INteractive
Structural ANalysis Environment) platform, originally developed with FEM functionalities and later expanded to
G/XFEM simulations. It is an open source software developed at the Structural Engineering Department of the
Federal University of Minas Gerais.

Keywords: eXtended Isogeometric Analysis Method; Computational Mechanics; Fracture Mechanics; Object
Oriented Programming; JAVA.

1 Introduction

Isogeometric Analysis (IGA), introduced by Hughes et al. [1], seeks to combine the physical representation
of problem with the approximate functions that reproduce the solution field. It uses base functions capable of
performing this coupling, such as B-Splines and non-uniform rational B-splines (NURBS) functions. Thus, it is
possible to describe the exact geometry of the problem being analyzed, in addition of reducing the computational
effort arising from the mesh generation and processing task. Indeed, the mesh refinement process in IGA is
automated, which enables the creation of simple meshes to describe the geometry of the physical model and more
complex meshes to represent the solution field.

Another advantage of IGA is the smoother feature of the approximate functions, allowing them to reach
higher levels of continuity of the derivatives that represent the problem solution, when compared to the FEM.

The aforementioned advantages can become drawbacks, to represent discontinuous information in a contin-
uous medium, such as transition between materials or cracks. Within this context, eXtended Isogemetric Analysis
(XIGA) proposed by Benson et al. [2] and later improved by Luycker et al. [3], combines the exact description of
the geometry and the smoothness of the basic functions of IGA with the explicit enrichment strategy from the Gen-
eralized/eXtended Finite Element Method (G/XFEM) studied in Oden et al. [4], Strouboulis et al. [5] and Duarte
et al. [6]. Similar to G/XFEM, an XIGA enriches the solution of the problem described by IGA with functions
that notoriously represent well the discontinuous behavior to be incorporated. As a result, the smooth part of the
solution is obtained by only IGA and the discontinuous part is described by the enrichment of the Partition of Unity
base functions also given by IGA.
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The present paper aims to discuss some results obtained in comparative analysis performed by XIGA and
G/XFEM analyses in the context of linear elastic fracture mechanics. The convergence of the solution and the
conditioning of the methods are evaluated under different types of polynomial degrees of the approximation and
the combination of discontinuous and singular enrichment functions.

2 Isogeometric Analisys

The first works carried out in IGA used Non-Uniform Rational B-Splines as bases functions, because, accord-
ing to Hughes et al. [1], the NURBS type functions are the most widely used in CAD systems. An isogeometric
analysis, however, is not limited to the use of NURBS. Other functions can be used, as long as the geometry and
solution of the analyzed model are in accordance with the description. We take, for example, functions that allow
the local enrichment of the mesh, such as T-Splines, introduced by Sederberg et al. [7] and later applied in IGA by
Bazilevs et al. [8].

IGA’s field of application is very wide, especially when it comes to engineering problems. In Hughes et al.
[1], IGA was primarily applied to linear structural problems and fluid flow problems. In Nguyen [9], IGA was
discussed for classical solid mechanics problems. Other very common uses of IGA are in plate analysis (Veiga
et al. [10]), shells (Uhm and Youn [11], Kiendl et al. [12], Benson et al. [13, 14, 15], Echter et al. [16]), composites
(Ghafari and Rezaeepazhand [17]), hydraulic fracturing ( Hageman and de Borst [18]) and problems involving the
damage mechanics ([19]).

2.1 Overview

In isogeometric analysis there are two mesh concepts: the control mesh and the physical mesh. The control
mesh is composed of points, called control points, which serve as a basis for the construction of NURBS that, in
turn, describe the physical mesh. The degrees of freedom of the problem are linked to the control points (Rauen
[20]).

IGA shape functions, including NURBS, are built in parametric space from a “knot vector”. The “knot
vector” is a vector composed by a non-decreasing set of “knots” , which represent points in the parametric space
and which constitute the necessary parameters for the creation of shape functions. Each direction of the model,
whether one, two or three-dimensional, is composed of a parametric representation through the knot vector. In this
paper two-dimensional analysis are presented.

For one-dimensional models, the concept of element is the domain between two “knots”, of different values,
within the “knot vector”, the so-called “knot span”. In two-dimensional problems, this concept is extended and the
element is defined as the space between two “knots” in each direction considered (Nguyen [9]).

2.2 Formulation

Equilibrium Equation

Using the principle of virtual work, we have:

∫
Ω

σ(u) : ε(v)dΩ =

∫
Ω

b · vdΩ +

∫
Γ

t · vdΓ. (1)

where the integral on the left side of the equality is the internal virtual work and the integrals on the right side
represent the virtual work of the external forces. v is the field of virtual displacements, kinematically admissible,
b are the body forces and t are the surface forces, σ and ε represents the stress and strain field respectively. Ω is
the problem domain and Γ is the boundary of the problem. In addition, it was considered linear elastic behavior so
Hooke’s law is assumed.

In this paper, it was used the NURBS basis functions in the IGA context.

Geometry and Displacements

The NURBS functions Ri, associated with the set of control points Pi(x, y, z), i = 1, 2, ..., n are used to
describe the geometry of the problem by:
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x =

n∑
i=1

Rixi, y =

n∑
i=1

Riyi. (2)

Similar to the geometry description, displacements are approximated by the same NURBS functions:

u =

n∑
i=1

Riui, v =

n∑
i=1

Rivi. (3)

It is important to emphasize that the control points do not necessarily belong to the domain problem, therefore,
the degrees of freedom associated with these control points have no physical meaning, serving only as a basis for
calculating the displacements that actually occur inside the domain problem.

2.3 Bézier Extraction

The Bézier Extraction (Borden et al. [22]), is a technique that aims to facilitate the implementation of the
IGA within a FEM computational system. It is a different and simpler way of writing NURBS and also tends to
facilitate numerical integration as it reduces the need for mappings between different IGA meshes. This technique
was used in the analysis shown in the present paper, since the implementation of XIGA was carried out on the
computational platform INSANE where the FEM and G/XFEM are implemented.

The INSANE (INteractive Structural ANalysis Environment) is a computational system under development
by the Department of Structural Engineering (DEES) of the Federal University of Minas Gerais (UFMG), imple-
mented in JAVA programming language and that uses the Object-Oriented Programming paradigm (POO) (Fonseca
and Pitangueira [21]). It was chosen because it is a dynamic system, so it allows several expansions and is open to
new methods witch with small modifications can be added to its technical framework.

2.4 Refinement

The refinement used in IGA may be performed in a simple automated way, without the need of constant
communication of the geometric description of the model. It is done in a way that preserves the description of
the initial geometry and also preserves the range of parametric representation. Here, it is taken the advantage of
the k-Refinament, a special IGA way to refine the mesh. The ideia of this refinament is to increase the degree of
approximation, its continuity and the number of elements in the model. The formulation of such refinement can be
found in Hughes et al. [1].

3 eXtended Isogeometric Analysis

In xEtended Isogeometric Analysis (XIGA) the space of approximation of the solution obtained by IGA is
extended from the enrichment of the basis functions of the control points. It is interesting to carry out this operation
in regions, with the presence of localized phenomena that require a more complex description. The enrichment
strategy used in XIGA is derived from methods such as the Cloud Method (Duarte [23]), the Partition of Unit
Finite Element Method (Babuška and Melenk [24]) and the G/XFEM (Duarte et al. [6]). The difference between
these methods and XIGA is the construction of the partition of unity, PU, which in the latter is defined by the set
of NURBS functions (Tran et al. [25]).

Formulation

The local enrichment functions, Lji(x), specific to each problem to be analyzed, are qj linearly independent
functions, where q is the number of functions used to enrich the PU, defined for each base function or point of
control, xj :

{Lji(x)}qi=1 = {Lj1(x), Lj2(x), ..., Ljq(x)}, with Lj1(x) = 1. (4)
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The set of local enrichment functions multiplies the PU, which in the case of XIGA is formed by the NURBS
functions, in order to create the set of enriched functions, φji(x):

{φji(x)}qi=1 = Rp
j (x)× {Lji(x)}qi=1 no sum in j. (5)

A generic approximation ũ(x) is obtained through the linear combination of the shape functions:

ũ(x) =

n∑
j=1

Rp
j (x)

{
uj +

q∑
i=2

Lji(x)bji

}
. (6)

where uj and bji are nodal parameters associated with each component Rp
j (x) from IGA and Rp

j (x) · Lji(x) from
XIGA, respectively.

Enrichment Functions

In the present work, under the approach of Fracture Mechanicals, three kind of enrichment funtions are
adopted. They are the Heaviside functions to describe the discontinuity of the displacement field, polynomial
functions to represent the smooth part of the solution and OD functions (Duarte et al. [6]) to introduce the singu-
larity or the stress field around the crack tip. Its formulations can be found in Duarte et al. [6] and Moës et al.
[26].

4 Numeric Example

The plate depicted in Figure 1(a) is considered here under plane stress conditions. The adopted material has
the modulus of elasticity (E) equal to 1 c.u. (consistent units) and Poisson’s coefficient (ν) equal to 0.3.

Figure 1. Plate Model Tensioned with Pre-Crack: a) The Model. b) Mesh for p=1 (XIGA and G/XFEM). c) Mesh
for p=2 (XIGA). d) Mesh for p=3 (XIGA). The circles are the nodes/control points, the red line is the crack, the
pink circles are the nodes/control points enriched with Heaviside function in the three types of analyses (A, B and
C), the green circles are the nodes/control points enriched with the functions capable of describing the two crack
opening modes in the B and C analyses and the yellow circles are the additional nodes/control points enriched
with crack functions in the C analysis.

According to Alves [27], the reference solution of this problem was obtained using the software ANSYS R©
with 12087 mesh of quadrilateral p-elements, considering the symmetry of the problem and from the extrapolation
to polynomial approximations of degree p=1, 2 and 3. The strain energy result found for the whole domain was
10.98326746 c.u. and the stress component σyy at the point x=7.99944 and y=10.00 is 66.769 c.u..
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For the analysis performed by G/XFEM a mesh of 50 bilinear quadrilateral finite elements (4 nodes) was
used. For the XIGA analysis the physical mesh has the same 50 quadrilateral elements, but there are 3 different
control meshes in XIGA: the first one is the same as G/XFEM mesh where the nodes coincides with control points
only, representing a linear analysis (p=1); the second one is associated with the quadratic analysis (p=2), and the
last represents the cubic analysis (p=3). To reproduce the quadratic and cubic analysis in G/XFEM, polynomial
enrichment functions were used to enrich the PU, so the mesh keeps unchanged. The crack was described in the
mesh by a combination of Heaviside functions (Moës et al. [26]), to describe the discontinuity of the displacement
field and the OD enrichment functions, used in Duarte et al. [6], to introduce the singularity or the stress field
around the crack tip.

Figure 1 shows the physical mesh used in both analysis and the control meshes used in XIGA analysis. For
numerical integration, 12x12 points are used in the hatched elements in Figure 1, aiming to accurately represent
the proposed approximate solutions. In the other elements only 4x4 integration points were used.

Three types of analyses were adopted, A, B and C. In analysis A, only the discontinuity is inserted in the
model, through the Heaviside function enriching the pink points showed in Figure 1(b), 1(c) and 1(d). In analysis
B, the OD functions, capable of describing the Mode I and Mode II of crack opening, are inserted as PU enrichment
only for the nodes/control points around the crack tip, green points in Figure 1(b), 1(c) and 1(d). In the C analysis
the OD functions are used again but one more layer of nodes/control points is enriched with them, the yellow ones
in Figure 1(b), 1(c) and 1(d).

The graphs of Figures 2, 3 and 4 show the results of the analyses in terms of error in strain energy, error in
stress component σyy near to the crack tip and condition number of the stiffness matrix provided by the investigated
methods, as a function of the number of degrees of freedom, respectively.
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Figure 2. Log Error in Strain Energy for the various
models presented.
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Figure 3. Error in Stress at a Point for the various
models presented.

Analyzing the results of strain energy and stress (σyy) next to the crack tip in Figures 2 and 3, it is possible
to note that there is a coincidence of results from the G/XFEM and XIGA when the polynomial approximation
degree is p=1. This result was already expected, as the NURBS shape functions coincide with the Lagrangian
shape function in this case. When higher degrees are used (p=2, p=3), there is an improvement in the results,
as the number of nodes/control points increases, in both methods. The advantage of XIGA in this regard, is the
achievement of a satisfactory solution, as it is enriched with functions capable of representing the crack opening
modes, increasing few degrees of freedom of the model, when compared to G/XFEM. Surely, a small number
of DOFs reduces the computational cost of the problem. Nonetheless, other factors such as the complexity of the
algorithm of creating the XIGA approximation should also be investigated. Additionally, in the higher order XIGA
analysis, values of strain energy and stress near the crack tip were found closer to the reference. The results found
in the analyses A can be explained by the poor description of the approximate solution around the crack. Indeed,
only Heaviside functions are used, which doesn’t contribute to simulate the expected singularity of the stress field
in the crack tip. Particularly, for XIGA, this poor description is combined with the increase of the number of
control points enriched with the Heaviside functions, which seems to deteriorate the accuracy of the solution. In
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Figure 4. Scaled Condition Number for the various models presented.

terms of the stress component σyy, a similar behavior is observed in Figure 3. The only difference is the result for
XIGA-C with p=3, which presents a slightly higher error when compared with the previous point of the same curve.
Nevertheless the XIGA-C still provides more accurate values than the other simulations. Numerical perturbations
from the computation of stress component σyy on the element edge and from the numerical integration need to be
investigated. This investigation and the evaluation of the SIF will be part of the next steps of this work.

Regarding the condition number presented in Figure 4, it is possible to see that as the degree of approxi-
mation increases in the G/XFEM models, the condition number is less stable than in the XIGA models. Thus,
matrices solved in G/XFEM are much more likely to add numerical errors to the model since they deal with linear
dependence of their variables and small perturbations in the stiffness matrix can lead to large changes in the vector
solution making the results numerically less reliable.

5 Conclusions

XIGA is a methodology that seeks to combine the advantages of accurate geometry description and the
smoother feature of its shape functions coming from IGA with the ease way of inserting discontinuities in the
model by PU enrichment coming from G/XFEM. In the present work, a cracked painel is used to compare different
configurations of discretizations by G/XFEM and XIGA.

In the analyses carried out, it was possible to observe the equivalence between G/XFEM and XIGA for linear
approximations. For higher order approximations, in XIGA, it was possible to achieve better results in terms of
strain energy and stress near the crack tip without substantially increasing the number of degrees of freedom. In
addition, the non polynomial character of the PU built with NURBS functions provides smaller and better behaved
condition numbers when compared with the ones obtained with the polynomial enriched G/XFEM.
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