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Abstract. When solving complex engineering problems of structural and solid mechanics, the adoption of lin-
earity hypotheses may not be accurate and the use of nonlinear models can become necessary. Also, numerical
methods are often used to generate approximations to them since analytical solutions are unknown for most of
these problems. In this context, solving the equilibrium equations requires the use of specific strategies, with the
Newton-Raphson Method being one of the most commonly adopted. In standard nonlinear analyses using the
Finite Element Method, an initial solution is obtained for a first discretization. Then, the quality of this solution
is evaluated to decide if further analyses are needed in order to obtain more accurate results, therefore exploring
an improved discretization. If a more refined mesh is necessary, for example, the solution must be recalculated
once again. In this paper, an alternative to this process is presented using a projection technique. Accordingly, all
the information obtained during the analysis using a less refined discretization is transferred to the more refined
one. Thus, the results provided by a first mesh is used as an initial guess for the iterative scheme in order to solve
a second mesh. This also helps improving the convergence within the Newton-Raphson Method. A discussion
related to the performance and effectiveness of this technique, that can be explored in combination with adaptive
procedures for nonlinear analyses, is also presented. Finally, a two-dimensional geometrically nonlinear numerical
problem, using the Generalized Finite Element Method, is shown to validate the presented technique.
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1 Introduction

In practice, the use of numerical methods requires performing multiple analyses for the problem of interest
in order to reach accurate enough results provided by a computational model that well represents it. Usually, an
initial discretization is adopted and then its solutions are assessed to decide whether the model is adequate, i.e.,
whether it properly and accurately represents the problem physical conditions. The improvement of such iterative
process, performed aiming at obtaining good approximate solutions, is what inspires the development of adaptive
procedures. Within the context of nonlinear analyses, this iterative task can become even more computational
expensive since seeking for a solution requires now solving several linear systems of equations. Following the
idea previously described, an adaptive procedure that completely reprocesses a new model whenever a different
discretization is built could be implemented. It is easy to see, however, that this can quickly turn the use of
computational resources more expensive.

Exploiting the Generalized Finite Element Method (GFEM) ability to converge to the exact solution as the
discretization is refined, an adaptive procedure that uses a previous solution already computed with a coarser mesh
as a starting point for a more refined discretization can be conceived. Thus, it is no longer needed to restart the
entire iterative nonlinear solution back again. The main objective is to reduce the number of iterations required
for the new discretization to converge. An important step that allows performing the idea presented above is to
properly project the initial solution belonging to a lower-dimensional space onto a new vector space attached to
the refined mesh. Following the projection technique, the vector containing the solution obtained with the initial
discretization needs to be recomputed, therefore expanded and complemented in order to fit with the new number
of Degrees of Freedom (DoFs) related to the new mesh. Thus, when starting the Newton-Raphson Method (NRM),
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information available from the old discretization can be used as a starting solution for the iterative procedure. This
initial guess will likely be closer to the final solution than a null initial guess. The objective here is to more quickly
achieve the method quadratic convergence property.

In this paper, the projection technique is presented and implementation details are discussed. In addition, this
technique is applied to geometrically nonlinear numerical examples within the two-dimensional (2-D) solid me-
chanics context. Both advantages and disadvantages of the projection technique studied herein are also discussed.
Finally, some comments on how this technique can be applied within a fully adaptive procedure are also presented.

Following this introduction, Section 2 briefly presents the nonlinear Boundary Value Problem (BVP) and the
numerical method used throughout this paper. Section 3 is devoted to give theoretical aspects of the projection
technique. Numerical examples are presented in Section 4, and, finally, Section 5 summarizes the main conclu-
sions.

2 The nonlinear model problem

In this work, a geometrically nonlinear problem of solid mechanics is solved in order to evaluate the projection
technique studied herein. Consider a body Ω̄ ⊂ R2 with boundary ∂Ω. In particular, ∂ΩD and ∂ΩN constitutes
a partition of ∂Ω, in which Dirichlet and Neumann boundary conditions are applied, respectively. The weak
formulation of the BVP can be obtained by the nonlinear (total Lagrangian) description of the Principle of Virtual
Work (PVW), which states:

Find the displacement u ∈ U ⊂ (H1(Ω))2, with u(∂ΩD) = ū, that solves

∫
Ω

S(u) : E(δu) dS =

∫
Ω

b̄ · δudS +

∫
∂ΩN

t̄ · δuds, (1)

for all δu ∈ U0 ⊂ (H1(Ω))2, with δu(∂ΩD) = 0.
In Eq. (1), S represents the second Piola-Kirchhoff stress tensor and E the Green-Lagrange strain tensor.

The adopted constitutive law is the hyperelastic Saint-Venant-Kirchhoff (SVK) model given by S = C : E, with
C the 4th-order constitutive tensor. In addition, b̄ and t̄ are body forces and tractions applied in Ω and on ∂ΩN ,
respectively. For detailed explanations regarding these topics, see the classical references of Bonet and Wood [1],
Holzapfel [2], and Bathe [3].

The analytical solution of Eq. (1) can only be achieved in a few cases. Numerical techniques can, then, be
applied in order to solve the problem. Since the problem is nonlinear, a linearization of Eq. (1) is performed and,
then, a Galerkin discretization is applied to the resulting equations and so approximate solutions û ∈ U h can be
obtained. The finite-dimensional subspace U h ⊂ U used herein is the one spanned by GFEM shape functions.

The GFEM methodology expands the FEM approximation space by arbitrary enrichment functions in such a
way that the nodes can have more functions attached to each direction in order to improve the method approxima-
bility. In addition, one of its greatest advantages is to preserve the FEM feature of using an approximation space
closely related to a mesh of finite elements. A GFEM approximate displacement û(x) ∈ U h can be given by

û(x) = φαi(x)uαi, (2)

with α = 1, . . . , n and i = 1, . . . ,m(α).
In Eq. (2), φαi(x) = ϕα(x)Lαi(x) represents a GFEM shape function, with ϕα(x) a linear or bilinear Parti-

tion of Unity (PoU) attached to the node α, and Lαi(x) a scalar-valued enrichment function, with i = 1, . . . ,m(α)
and Lα1 = 1. For more details about the method, see, among others, Strouboulis et al. [4], Duarte et al. [5], and
Strouboulis et al. [6].

3 The projection technique

The projection technique presented herein follows the approach proposed by Thompson [7], that used the
Bratu’s nonlinear equation as the underlying BVP and the FEM as the numerical method to provide approximate
solutions. In general, projection techniques seek to answer the following question: What is the best way to rep-
resent a vector in another space? To answer this question, these projection strategies seek to minimize the error
when changing the vectors from one space to another. In the projection studied herein, two GFEM approximation
spaces are involved, spanned by different discretizations, i.e., different set of shape functions.
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(a) Initial mesh (b) New mesh (c) Auxiliary triangulation

Figure 1. Generation of the auxiliary triangulation used for integration of the projection matrix

Starting with a solution from an initial GFEM discretization, the projection technique seeks for the optimal
representation of this solution in an usually more refined discretization. Here, the setφ contains the shape functions
related to the discretization in which the solution is known, whileψ contains the shape functions related to the new
discretization, obtained after one step of an adaptive procedure, for instance.

In this situation, each approximation can be given by:

û(x) = ui φi(x) and ûp(x) = upj ψj(x), (3)

with i = 1, . . . , card(φ) and j = 1, . . . , card(ψ).
Using the projection technique, the coefficients that generate ûp(x) are computed in such a way that the error

eu(x) = û(x) − ûp(x) be as small as possible. This can be obtained by the condition of orthogonality between
the error and the subspace in which it is being projected onto. This is mathematically expressed by:

〈û− ûp, ψk〉 = 0, ∀ ψk ∈ ψ (4)

and 〈·, ·〉 representing the standard L2(Ω) inner product. The development of Eq. (4) yields:

〈ψk, ψj〉upj = 〈ψk, φi〉ui, ∀ ψk ∈ ψ. (5)

Finally, Eq. (5) can be written in a matrix notation as expressed in Eq. (6), in which [M ] and [P ] are
named metric and projection matrices, respectively. According to Eq. (6), given the vector {u}, that contains
the DoFs ui, with i = 1, . . . , card(φ), one can find the vector of projected DoFs {up}, that contains upj , with
j = 1, . . . , card(ψ), by solving the following linear system of equations:

[M ] {up} = [P ] {u}, (6)

with

Mkj = 〈ψk, ψj〉 =

∫
Ω

ψk ψj dS and Pki = 〈ψk, φi〉 =

∫
ω(ψk)∩ω(φi)

ψk φi dS, (7)

in which k, j = 1, . . . , card(ψ), and i = 1, . . . , card(φ). In addition, ω(ψk) = supp(ψk) and ω(φi) = supp(φi)
represent the support of each function.

3.1 Implementation details

The evaluation and assembly of the global [M ] matrix are similar to what is applied to mass matrices within
the FEM context, so no further details will be provided herein. On the other hand, the evaluation and assembly of
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Figure 2. Integration of local projection matrices

the projection matrix [P ] demands integration over the intersection region among finite elements from two distinct
meshes as shown in Eq. (7). Basically, this is necessary since the shape functions of each discretization are defined
on mismatched elements.

First, to compute these intersections, an auxiliary triangulation is created. The triangles that make up this
auxiliary mesh will be called, herein, as sub-elements. This triangulation is created, in this work, by algorithms
provided by the CGAL Project [8]. After the generation of this auxiliary mesh, these sub-elements will act as
integration domains to generate the projection matrix. To clarify this procedure, consider two distinct meshes
for the same domain, as depicted in Figs. 1a and 1b. The mesh illustrated in Fig. 1c is the new auxiliary mesh
created by computing the intersection of the two previous ones. The global projection matrix is, then, assembled
by considering all local projection matrices computed for each sub-element. The sub-element local indexes are
mapped to global indexes as in standard FEM assembly procedures.

In addition, consider that the solution is known for the mesh of Fig. 1a and that one intends to project this field
onto the mesh of Fig. 1b. For simplicity, only one displacement component will be considered. When computing
the local projection matrix of the sub-element highlighted in Fig. 1c, for example, all the three shape functions of
the elements illustrated in Figs. 2a and 2b will be integrated over the area of the sub-element in Fig. 2c. Note that
the shape functions shown in the Fig. 2 present local indexes, which is easily mapped to global ones in order to
assemble the global projection matrix.

Finally, it is important to address that the method detailed before is directly compatible with linear triangular
and bilinear quadrilateral elements. To compute the intersections of higher-order elements, an expansion of the
algorithm presented herein needs to be done, which will be focused on forthcoming works.

3.2 On the projection and the Newton-Raphson Method

Clearly, the final DoFs projected onto the new discretization are not the final solution of the nonlinear prob-
lem. In fact, this would only happen if the problem solution is linear since the projection, in this situation, would
not modify the initial vector. Usually, a null starting guess and a linear tangent matrix are chosen when seeking
for a solution by using the Newton-Raphson Method. However, this guess is often too far from the solution of the
nonlinear problem and, because of this fact, it is necessary a large number of iterations to achieve the convergence.
Therefore, the applicability of this technique aims at using the projected solution as an initial guess instead of the
linear one, supposing it will be closer to the final solution when solving the problem in the finer mesh. The initial
tangent matrix is also improved.

Another important feature to be reminded is related to the Newton-Raphson Method quadratic rate of con-
vergence, reached as the iterations get closer to the solution. Therefore, the projection technique, by providing an
initial guess closer to the final solution, contributes to more quickly reach the previously mentioned convergence
property. The property can be expressed by

‖u− ûn+1‖L2(Ω) ≤ C ‖u− ûn‖2L2(Ω), (8)

with C > 0 a constant.
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4 Numerical example

4.1 Problem description

The example chosen to demonstrate the efficacy of the projection technique consists of a cantilever beam
under a bending moment load, that is imposed through a linear traction applied at its free end. Fig. 3 shows the
beam geometry and boundary conditions. A Young’s modulus E = 2 × 108 and a Poisson’s ratio ν = 0.3 are
assumed. In the region where Dirichlet boundary conditions are enforced, a Young’s modulus ten times higher
than the one adopted elsewhere is assumed in order to prevent some numerical instabilities related to geometrically
nonlinear analyses. Moreover, plane stress conditions are adopted. Finally, the stopping criteria for the NRM is
‖R(k)‖2 / ‖R(0)‖2 < 10−10, with ‖R(k)‖2 the L2 norm of the residual vector for the (k)-th iteration.

q=6⋅106

4.0

0.
4

0.08 0.08

Figure 3. Problem description

To study the projection technique presented herein, two different initial mesh topologies are analyzed. In the
first set of simulations (Case 1), a structured mesh is adopted with bilinear quadrilateral elements (see Fig. 4a). A
more refined mesh with the same element type is then used to simulate an h-adaptive process (see Fig. 4b). In this
case, no enrichment is adopted, recovering, then, FEM approximate solutions.

(a) Initial mesh

(b) New mesh

Figure 4. Initial and new meshes - Case 1

In the second set of simulations (Case 2), an structured mesh is also initially adopted, however using linear
triangular elements (see Fig. 5). To simulate a p-adaptive process within the GFEM context, a new discretization
is generated by enriching all the nodes of the initial mesh in each direction by the set of polynomial functions
Lαi ∈ {1, p1,0, p0,1}, with

pi,j =
(x− xα)i (y − yα)j

hi+jα

, (9)

and xα and yα the coordinates of the enriched node α. In addition, hα is defined as the greatest distance between
this same node and its neighboring nodes.

Figure 5. Initial mesh - Case 2
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4.2 Results and discussion

For both Cases 1 and 2, the coarser meshes are solved using 10 load steps. After the convergence of each
step, in which the deformed shapes are depicted in Fig. 6, a projection of the current solution onto the finer mesh is
done. As already specified in Section 3, this projected solution is used as an initial guess to the NRM when solving
the more refined discretization. This more refined discretization is solved with only 1 load step.

(a) Case 1 (b) Case 2

Figure 6. Deformed shapes for each step of the initial discretizations

The convergence behavior along the NRM iterations for the more refined discretizations is shown in Fig. 7 for
all the initial guesses provided by every load step of Cases 1 (Fig. 7a) and 2 (Fig. 7b). Two general observations are
made about it. First, the black solid curves with initial null guesses (named ”No Projection”) are used herein only
to compare the improvements when initial guesses, computed with the projection technique, are adopted. Second,
the initial value of the L2 norm of the residual vectors almost coincides for all curves since, in this case, ‖R(0)‖2
depends mainly on the imposed traction load.

Moreover, the plots depicted in Fig. 7 show that in the last iterations of all analyses the curves become almost
parallel. This indicates that an optimal rate of convergence is reached. An important fact to be highlighted here is
that the number of iterations to reach this optimal rate of convergence significantly decreased as the projection is
done using final solutions of the coarser mesh. This shows that the projection technique can indeed take advantage
of these improved initial guesses.
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Figure 7. Convergence of the more refined discretization after projecting each load step of the initial discretization

It can also be observed that in the first step of both Cases 1 and 2 the provided initial guess does not bring
improvements to the NRM. This indicates that the projection technique must be used carefully since some initial
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guesses bring little or no improvement to the NRM convergence behavior. However, using initial guesses closer to
the final solution strongly improves the method convergence, as shown in Fig. 7.

Comparing both Cases 1 and 2 in Table 1, it can be noticed that, in Case 1, the projection technique may
continuously decrease the number of iterations in a limit from 17 to only 4, with a relative gain of approximately
73%, while in the second the best relative gain was approximately 53%. Although both coarser meshes have the
same number of DoFs, the difference on the relative gains happens because the last case is solved using linear
triangular elements, which have, in general, less quality of approximation than the bilinear quadrilateral elements.
Because of this, poorer solutions are obtained, yielding then poorer initial guesses.

Table 1. Number of iterations (NI) and relative gain (RG) for each load step (LS)

LS
NI RG (%)

Case 1 Case 2 Case 1 Case 2

1 15 15 0 0
2 14 15 7 0
3 12 14 20 7
4 10 13 33 13
5 9 12 40 20

LS
NI RG (%)

Case 1 Case 2 Case 1 Case 2

6 8 11 47 27
7 7 9 53 40
8 6 9 60 40
9 5 8 67 47

10 4 7 73 53

5 Conclusions

The projection technique presented herein shows to be promising to be used along with adaptive procedures
for nonlinear analyses of solids and structures performed by either the FEM or the GFEM. Using this technique,
it was illustrated that problems with projected initial guesses need fewer iterations to reach the convergence when
solved by the Newton-Raphson Method than when a null initial guess is adopted. This also helps to more quickly
achieve quadratic convergence. Forthcoming works will focus on fully adaptive procedures for nonlinear problems
with this technique being adopted to transfer information between discretizations, which is required to accomplish
this type of analyses.
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