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Abstract. The Virtual Element Method (VEM) is a recent method that proposes a generalization of the classical
Finite Element Method (FEM). VEM formulation is complex and requires a strong mathematical base. VEM
models are able to use any simple polygon (convex or non-convex polygons) as mesh discretization elements,
which leads to the functions associated with each of those elements being not strictly polynomials. Thus, the
core proposal of VEM is to compute those functions implicitly, by projecting then in a polynomial space. The
Virtual Element Method was originally formulated for the Poisson Equation, which is largely explored both in
mathematics and natural sciences due to its versatility.

Approximation methods like VEM are widely applied to solve partial differential equations (PDE). A less
common approach is to use artificial intelligence techniques like Artificial Neural Networks (ANNSs). Solve PDEs
with ANNSs is not new, but with the increasing popularity of deep learning techniques and new frameworks (e.g
Pytorch and Keras), this approach is becoming more relevant. In the present work, the Poisson Equation is trans-
formed into an optimization problem and them ANNs are used to compose a trial solution, aiming to obtain the
best one (i.e., the one that reduces the error as much as possible). Artificial Neural Networks are widely used in
this kind of approach since they are very popular in classification problems.

Throughout the article, the formulation of VEM and the ANNs approach is presented, highlighting their main
characteristics. The implementation of both approaches is discussed and the results are compared.
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1 Introduction

The Virtual Element Method (VEM) proposes to generalize the classical Finite Element Method (FEM)
with respect to the mesh discretization. Any simple polygon (convex or non-convex polygons) can be used as
a discretization element with VEM. Consequently, the shape functions are not restricted to polynomials. In this
sense, the main idea of VEM is to compute these functions implicitly, without knowing their explicit form. Also,
accordingly to Mengolini et al. [1], the method has a good performance with complex geometries and is more
flexible than the FEM regarding to the mesh quality. These characteristics make the Virtual Element Method a
powerful tool to work with engineering problems. For example, there are already application of the method in
fluid mechanics (see da Veiga et al. [2]), topology optimization (see Paulino and Gain [3]], Antonietti et al. [4]) and
contact problems (see Wriggers et al. [5], Aldakheel et al. [6]).

The original formulation of the Virtual Element Method is based on the Poisson Equation as it can be seen in
the canonical papers da Veiga et al. [[/] and da Veiga et al. [8]. Thus, the method applied to the Poisson Equation
is well established in the literature. For example, in Sutton [9], a implementation of the VEM in MATLAB is
presented illustrating the main characteristics of the method’s implementation. And in Ortiz-Bernardin et al. [[10],
the VEM application for the Poisson Equation is given as particularization of the linear elasticity formulation.
Also, the mathematical aspects of the method are explored in da Veiga et al. [11] where the stability and mesh
regularization properties are also discussed, and in da Veiga et al. [12] where the method is formulated for general
elliptic problems. From literature, the systematization of the VEM applied to Poisson Equation is given by:

1. Discretization of the geometry;
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2. Construction of the virtual element space;
3. Introduction of the projection operator;
4. Construction of the local stiffness matrix;
5. Construction of the load vector.
The steps are discussed in details on da Veiga et al. [[/] and in the next section a brief presentation of them is made.

A less common approach regarding to solve partial differential equation (PDE) is the usage of machine
learning techniques, more specifically artificial neural networks (ANNs). This approach is not new, but it has been
put aside because more powerful techniques have been developed at the time. Since machine learning is one of the
trend topics in computer science, ANNs applied to differential equations are being revisited fueled by new deep
learning frameworks like Tensorflow and Pytorch.

In Lagaris et al. [[13]], a formulation to solve differential equations with boundary conditions is proposed. The
authors introduce a trial solution in which the first part is related to the initial and boundary condition and has no
modifiable parameter. The second part is related to the artificial neural network with modifiable parameters and
it is constructed in way not to affect the boundary conditions. The used network is a feedforward neural network
and the modifiable parameters are called weights. In this work, this approach was chosen once the implementation
of this formulation is not difficult and can be adapted to be used with popular deep learning frameworks. In the
last years other approaches using more robust networks were presented as in Tang et al. [[14] that use convolutional
neural networks and in Sirignano and Spiliopoulos [15] where a neural networks and Galerkin method are used
together.

The main objective of this work is to compare the Virtual Element Method and the artificial neural network
approach regarding the Poisson Equation. The formulation of both approaches are briefly presented and, then they
are applied to a problem with analytical solution. In this way, it will be possible to highlight the main characteristic
of each method.

2 The Poisson Equation

Let €2 be a polygonal domain. The continuous Poisson Equation (also called strong formulation) is given
with Dirichlet boundary condtions is given by:

{—Au:f, in Q 0

u=0, on 09 ’

where u € C?(Q) N C() and f € L?(Q). The solution u is very demanding once it is to find a function that
the first two derivatives are continuous. In this way the idea is reformulate the problem to obtain less restrictive
solutions. Choosing a test function v € HJ (£2) and multiplying eq. , one obtains:

/(fAuff)vd;v:0:>/Vu~Vvd:v7/fvdx:O:>/u'vda::/fvdx. 2)
Q
Q Q Q

Q

It is important to mention that H} (€2) is the closure of the space of C'2°(2) in the Sobolev space H!(€2) and L?(2)
is the Lebesgue space. Equation (2) is called weak form of the Poisson Equation, once it is only required to the
solution u be one time derivable and integrable, i.e., u € Hi(Q).

It is also possible to rewrite the problem defining the bilinear form as

a(u,v) = /u -vdz. 3)

Q

This operator also defines the inner product associated to Hg (£2).

3 The Virtual Element Method

In this section, the Virtual Element Method formulation for the Poisson Equation is briefly presented. This
formulation is based on the canonical papers [7]] and [8]. For more details, the reader can refer to these papers.
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The Virtual Element Formulation starts from the weak form of Poisson Equation given by eq. (2). The
goal is introduce a discrete form of the weak formulation by choosing a decomposition 7}, of 2 into simple
polygons (convex or non-convex polygons) E and defining h as the maximum polygonal diameter. Thus, the
discrete problem is given by

ah(uhavh) =< fhavh >, (4)

where up, v, € Vi, C H3(Q), fr € V), V4 is called virtual element space and V], is the dual space of Vj,. The
idea is to define the virtual element space Vj, g = V3 |g for each polygon E, build the discrete bilinear form ay,
and build the load term f},.

3.1 Virtual Element Space

One important hypothesis is that the polynomial space of k order of accuracy Py (F) is contained in the local
virtual element space V}, g, defined as

Ve = {vn, € Hy(E) : vplop € B(OE), Auvylp € Pr_s(E)}, )

where B(E) = {v, € C°(OFE)| vnle € Pr(e), Ve € O}, e is an edge of polygon E and OF is the boundary of
polygon E. Basically, as the shape functions are not known in the first moment, the choice of the space B(E) is
made such that these functions behave like polynomials on OF. As can be seen, the virtual element space has both
polynomials and non-polynomial functions.

If k£ = 1, the virtual element space becomes a harmonic function space because v, |g € P_1(E) = {0}. In
this sense, it is possible to prove that the function are defined by their values at the vertices of the polygon. Now, if
k = 2, the Laplacian is equal to a constant once Av, € Py(E). Therefore, the function vy, is defined by its value
in each vertex and on one point on the edges. For k = 3, to define vy, it also necessary the value in the internal
points. Thus, the degrees of freedom are chosen accordingly and can be verified in [7]. The choice of degrees of
freedom are made in order to define an unique v € V}, g.

3.2 The Bilinear Form

To build the bilinear form the idea is to introduce a projection operator IIV : V), p — Py (E) which is
responsible for projecting elements from the virtual element space to the polynomial space. In this way, the local
virtual element space can be written as Vj, g = HvVh, e+ (11— HV)Vh, . Two conditions must be satisfied in
order to find a discrete bilinear form ay, g:

Hypothesis 1. For each integer k > 1 and forall E € Ty,:
* Consistency: it holds that ap, g(q,v) = ag(q,v), for all ¢ € Py, and for allv € Vj, g,
o Stability: there exists constants C1,Cy > 0 independent of h and E such that Crag(v,v) < ap g(v,v) >
Caag(v,v), forallv € Vj, p.

The first choice for the discrete bilinear form would be aj, g (u,v) = ap(IIVu, IV v). Although this choice
does not satisfy the stability condition because as the functions are no entirely polynomials, the projection residues
make it impossible to find the constants C; and Cs. Thus, a term to handle the residues and guarantee stability is
introduced:

Naof

Sp(un,vn) =Y dofi(un)dofi(vn), ©6)

i=1

where Ny, ¢ is the total number of degrees of freedom and dof; : Vi g — R gives value of the i-th degree of
freedom. It can be seen that Sk is a symmetric bilinear form and other choices regarding to its definition can be
made as discussed in da Veiga et al. [11]. Finally, the discrete bilinear form is given by:
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ah’E(uh,vh) = aE(Hvuh,vah) + SE(’LLh — Hvuh,vh — Hv’l}h). (7)

3.3 Load term

The load term can be constructed using a similar idea to the bilinear form. The idea is to project function
from L?(FE) spaces into polynomial spaces Py, (E) using the projector LY : L?(E) — Py (E). As in this work,
only the linear case is being considered, for £ = 1 the load vector is given by:

1 ng
(fnsvn) = Lé(@th(Vi), ®)
i=1

EeTy,

where {V;}ic[1,n,) is the set o vertices of the polygon E and ng is the number of vertices. In this case, the term
fn is pieceswise constant and can be computed directly once the values of vy, in the vertices are known.

4 Artificial Neural Network Approach

Differently from the VEM, with the Artificial Neural Network approach the start point is strong formulation
given by eq. A trial solution w is chosen to satisfy the boundary condition. Simultaneously, the solution must
solve the Poisson Equation in the interior of the domain by learning a parameter w, called weight. The form of the
trial solution is:

ut(x,w) = BC(z) + P(x, NN(x,w)), )

where BC' is the function responsible to handle the boundary conditions, P is responsible to handle the solution
in Q and NN is a feedforward neural network with modifiable parameter w. As in eq. (I), u = 0 on 0%, then
BC(z) =0, for all x € 9.

Using the trial solution in eq. (9), the idea is to minimize the loss function given by:

w

E(w) = min Z{—Aut(a:i,w) — fxz)}?, (10)

where z; € ) are discrete points. In order to optimize this minimization and using the formulation in Aggarwal
and Ugail [16]], the following neural network is considered:

S
NN(.’E) :ZeiS(zi), (11)
=1

where S is the Sigmoid function, S is the number of units associated to Sigmoid functions, e; is the external weight
(weight from hidden unit ¢ to the output value) and

n
Zi = Zwijxj + b;. (12)
j=1

In this notation, w;; are the internal weights (weights from input unit j to the hidden layer i) and b; is the bias of
the unit <. Thus, the gradient can be computed as:
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FNN 4w
“oar = 2 ewhS (13)
=1

Considering a simplified model similar to a perceptron, the artificial neural network architecture is shown in
Fig.[1] In practical terms, the model is based on a feedforward network with a backward propagation and gradient

descent.
R /;\ :
S
Input layer j Output layer i
Figure 1. Artificial Neural Network Architecture
5 Results

The geometrical domain is a unitary square plate and the Poisson Equation is given by:

Au = —sin(nxy) sin(wzs), in (14)
u=0, on 0N
The analytical solution is:
w(wn, 33) = _ sin(mzq) sm(wxg). (15)

272

For the Virtual Element Method a uniform square mesh with 100 elements and 121 nodes is used. And for the
Artificial Neural Network approach a discretization with 121 points is used. The chosen hyperparameters to train
the neural network are the learning rate equals to 0.001, the number of epochs equals to 100 and one hidden layer.
Recalling that hyperparameters are attributes that are not estimated from the input data and most of the times they
are chosen empirically.

Figure [2] shows the plot of the analytical, VEM and ANN solutions. Figure [3] shows: (a) the deviation
between the analytical solution and the ANN approach; (b) the deviation between the analytical solution and the
VEM approach; (c) the deviation between the ANN and the VEM approach. It can be seen that for the same
number of degrees of freedom, the Virtual Element Method presents a smaller error than the Artificial Neural
Network approach. This may occur because the ANNs depends on the calibration of hyperparametrs that might
not be in their optimal values.

CILAMCE 2021-PANACM 2021

Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
1l Pan-American Congress on Computational Mechanics, ABMEC-IACM

Rio de Janeiro, Brazil, November 9-12, 2021



Solving the Poisson Equation using Virtual Element Method and Artificial Neural Networks

Using a higher number of points and the same hyperparameters in the ANN approach do not lead to a better
performance, instead it was observed that the error went higher. This can be justified once for the presented
formulation the hyperparameters must be adjusted for each different input data. Also, keeping the learning rate
and the number of epochs unchanged and using a higher number of hidden layers is not effective. The problem of
gradient vanishing is observed, i.e., due to the length of the neural network information is lost through it.

Analytic Solution ANN Solution

(a) Analytical Solution (b) ANN Solution

VEM Sclution

-0.01
-0.02 4
-0.03 ~

-0.04

(c) VEM Solution

Figure 2. Analytical and numerical solution surface representation for the Poisson Equation.
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Deviation - ANN Deviation - VEM

103 107

(a) ANN deviation (b) VEM deviation

Deviation VEM and ANN

0.2

(¢) VEM and ANN deviation

Figure 3. Deviation between solutions.

6 Conclusions

The Virtual Element Method proposes a generalization with respect the mesh discretization. In this method
any convex or non-convex polygon can be used, consequently the shape functions are not necessary polynomial.
The idea is to compute those functions implicitly by projecting them in a polynomial space. The systematization
of the method consists on discretizing the domain, constructing the virtual element space and choosing the degrees
of freedom, introducing the projection operator, constructing the stiffness matrix upon the consistency and stability
criteria and constructing the load vector.

The Artificial Neural Network approach considers a trial solution with two terms. The first term is responsible
to satisfy the boundary conditions and the second term is related to the neural network. This last term is built in
way not to interfere with the boundary conditions. From the solution, the loss function is defined and it is used to
minimize the approximation error. The neural network model presented here was formulated to solve differential
equations, more specifically the Poisson Equation.

In this project a simple ANN architecture is built and the results are compared with a implementation of the
VEM. The ANN approach presented a larger error when compared to the VEM as it was shown, even though the
artificial neural networks model is simpler and it is much easier to implement. This makes the neural network
faster than the Virtual Element Method in terms of computational time. As for the ANNs no weak formulation
is needed in the case of Poisson Equation, the regularity of the solution is preserved. On the other hand, the
Virtual Element Method is much more robust in terms of solving differential equation not requiring any parameters
obtained empirically. Also, the VEM can be used with a wider variety of geometrical domains.
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