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Abstract. Presenting light weight, cost-effective construction and the possibility of pre-tensioning, cables have 
been used as structural elements in suspension bridges, mooring lines, transmission lines, guyed towers, marine 
and off-shore constructions, cable trusses and roof structures. The analysis of cable structures by the Finite Element 
Method (FEM) using straight elements usually requires a high number of degrees of freedom in order to obtain 
acceptable results for the cable shape and its properties, such as cable tension and length. In this paper the 
Generalized Finite Element Method (GFEM) is studied with the use of trigonometric enrichment functions, 
considering a linear and inextensible cable analysis. The results obtained by the GFEM using the proposed 
trigonometric enrichment functions are compared to linear solutions provided by the Hierarchical Finite Element 
Method (HFEM). The computational cost is analyzed in terms of the total number of degrees of freedom and the 
program execution time. The condition number of the stiffness matrix is also discussed. 
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1  Introduction 

Cables can be used as structural elements in several engineering branches. Among its constructive 
advantages, one can mention its low weight and ease of assembly. One of the most notable uses of cables in 
structures is in suspension and cable-stayed bridges. According to Ren and Peng [1], cable-stayed bridges still 
have advantages over other types of bridges, including suspension bridges, and these are: better efficiency in the 
use of materials, greater stiffness and smaller size of structural elements, facilitating their 
manufacture/construction. In addition to the high architectural appeal, these bridge typologies have enabled 
increasingly larger spans, reaching up to 1 km (see Karoumi [2]). Another essential use of cables is in transmission 
lines. Costa [3] highlights that, in large countries, such as Brazil, the energy generated in plants needs to travel 
large distances in transmission lines to reach the final consumer. From an economic point of view, it is important 
that cables span great distances without compromising their structural behaviour, because, as in bridges, such 
cables are subject to static, thermal and dynamic loads.  

Another use of cables consists in suspension roofs. In 1950, the State Fair Arena project in Raleigh, North 
Carolina, promoted further study and construction of suspended roofs, as an advantage of this type of coverage is 
the ability to cover large areas with little material, according to Tibert [4]. However, all of the cited uses for cables 
require a rigorous structural analysis. An initial difficulty in the study of cables is that its geometry is load 
dependent, that is, its shape varies according to the applied forces (see Irvine [5]). Loads distributed along the arc 
length of the cable, such as its own weight, make it assume the form of a catenary. On the other hand, loads 
distributed along the span produce the shape of a parabolic curve. 

The Finite Element Method (FEM) is widely used in the study of cables in computational mechanics. In the 
case of cable analysis, straight elements require a high number of degrees of freedom in order to obtain satisfactory 
results for the cable profile and its properties, such as the length and the stresses developed in the cable itself. One 
can overcome this problem using the FEM itself and the h, p and hp refinements. The h refinement consists of 
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refining the mesh by increasing the number of elements, which can demand a high computational cost. The p 
refinement, on the other hand, consists in increasing the degree of the shape functions, however, the formulation 
of elements in the p refinement is not always simple, making its computational implementation difficult (see 
Proença and Torres [6]). In this context, enriched methods were developed, including the Generalized Finite 
Element Method (GFEM), which includes known information (a priori) of the problem in order to improve the 
solution with lower computational cost than the FEM. The Generalized Finite Element Method (GFEM) has been 
successfully used in several problems of computational mechanics, such as in linear dynamic analysis (see Arndt 
et al. [7]), nonlinear dynamic analysis (see Piedade Neto and Proença [8]) and three-dimensional nonlinear analysis 
(see Proença and Torres [6]). Therefore, this paper intends to apply the GFEM in the analysis of cable structures. 

2  Cables 

In Figure 1 a cable submitted to distributed loads and an infinitesimal segment of the cable are shown. 
 

 
 

Figure 1. General cable and infinitesimal cable segment. 

In Figure 1, L is the span of the cable, f is its sag, the vertical distance between supports A and B is h and θA 
is the angle measured between the cable and the horizontal at support A. The loads q and w are distributed along 
the span and the cable length, respectively, and forces V and H are the vertical and horizontal components of the 
axial force in the cable, respectively. By equilibrium of the infinitesimal segment, one obtains 
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which is the governing differential equation. In the following, the simplification 
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is used. Substituting Eq. (2) in Eq. (1), one obtains 
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which can be used with Galerkin Method. 

2.1 Linear Finite Element Method 

The cable element hereby used for the linear analysis is shown in Figure 2. In this element, firstly introduced 
by Przybysz et al. [9], ξ is the local coordinate, Le is the element length and y1 and y2 are the vertical displacements 
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of nodes 1 and 2, respectively. 
 

 

Figure 2. Linear cable element. 

According to the element presented in Figure 2, the displacement field y is 
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where NT is the transpose of the vector containing the linear shape functions Ni. Replacing Eq. (4) in Eq. (3) and 
applying the Galerkin Method yields 
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where it has been considered that 
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Considering B = dN/dξ and replacing it into Eq. (5), one obtains 
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From Eq. (7), it is possible to define 
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where Ke is the element stiffness matrix and Fe is the element external load vector. 

2.2 Iterative scheme 

The element stiffness matrix presented in Eq. (8) depends on the horizontal thrust of the cable H. By using 
an estimate for H, called Hi, it is possible to evaluate the stiffness matrix of the elements, obtain the displacement 
vector and, therefore, the sag fi, based on the estimate Hi. Since the value of the sag f is known, it is possible to use 
an iterative process so that the difference |fi-f| is smaller than the given tolerance when approaching better values 
for Hi. Using the Secant Method, as used by Przybysz et al. [9], one obtains 

 

𝐻𝐻𝑖𝑖+1 =
𝐻𝐻𝑖𝑖−1(𝑓𝑓𝑖𝑖 − 𝑓𝑓) − 𝐻𝐻𝑖𝑖(𝑓𝑓𝑖𝑖−1 − 𝑓𝑓)

(𝑓𝑓𝑖𝑖 − 𝑓𝑓) − (𝑓𝑓𝑖𝑖−1 − 𝑓𝑓)
,    𝑖𝑖 = 1, 2, … (9) 

 
The iterative process is halted when the difference |fi-f| is less than a given tolerance, that is, |fi-f| ≤ ϵtol. 

Especially in the case of enriched analyses, to find the value of the sag fn it is not necessary that a nodal point of 
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an element coincides with the abscissa where the sag f occurs, once fn can be found through interpolation. For 
every enriched analysis presented in this work, H0 was considered 

 

𝐻𝐻0 =
𝑝𝑝𝑙𝑙2

8𝑓𝑓
 (10) 

 
where p is the distributed load acting on the cable. The value for H1 is taken as H1 = 1.01H0. 

2.3 Generalized Finite Element Method 

The Generalized Finite Element Method (GFEM), was independently proposed by Melenk and Babuška [10], 
and by Duarte and Oden [11], and originated from the Partition of Unity Method. 

The shape functions of the GFEM are built by the product between the partition of unity function and 
enrichment functions, where the enrichment functions are not necessarily polynomial (see Kim et al. [12]). These 
functions are then assigned to the element nodes, expressed as a function of the system global coordinates (see 
Schwebke and Holzer [13]). 

A key feature of the GFEM is the use of previously known information about the solution of the differential 
equation that describes the system for the construction of the enrichment functions, presenting good local and 
global results. GFEM has been successfully used in various fields such as crack analysis (see Sukumar et al. [14]; 
O'Hara et al. [15]) and structural dynamics (see Torii [16]) 

For the two-node element showed in Figure 2, the solution provided by the GFEM for the element 
displacements ye can be written as 
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where 𝑦𝑦𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒  is the displacement obtained by the FEM, 𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒  is obtained through the enrichment functions, 𝜂𝜂𝑖𝑖 
are the linear partition of unity functions, 𝑦𝑦𝑖𝑖 are the nodal displacements, 𝑛𝑛𝑙𝑙 is the level of enrichment, 𝛾𝛾𝑗𝑗 are the 
enrichment functions and 𝑎𝑎𝑖𝑖𝑖𝑖 are the degrees of freedom related to those functions.  

In this paper, two sets of trigonometric functions obtained using the Fourier Series Theory (see Monteiro 
[17]) are used for enrichment. The set of sine functions are 
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Differently from eq. (12), the set of cosine functions are  
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In order to maintain numerical stability, the cosine functions in eq. (13) are divided by 
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The functions in eq. (12) and eq. (13) will be used as the γi enrichment functions in eq. (11), and the results 

provided by the GFEM are compared to those obtained by the Hierarchical Finite Element Method (HFEM), where 
the following Lobatto functions are used for refinement 
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(16) 

 
Each analysis labeled by the prefix “GFEM” indicates that the solution is enriched by GFEM, and the prefix 

“HFEM” denotes a refined solution obtained by HFEM. The following letters indicate the enrichment function 
used, e.g. “GFEM Fs3” stands for the solution provided by the GFEM considering the sine function Fs3, as 
presented in Eq. (12), while “GFEM Fs5” is the enriched solution obtained using Fs3, Fs4 and Fs5 as enrichment 
functions, that is, it includes Fs5 and all other sine function whose index 𝑖𝑖, as shown in eq. (12), is lower than 5. 
The notation is similar regarding the set of cosine enrichment functions. 

3  Numerial Results 

The cable shown in Figure 3 is analyzed. The cable weights w = 0,005 kN/m, its sag is f  = 6 m and it spans 
a distance of L = 40 m. 

Figure 3. Cable under self-weight load. 

The results are shown on Table 1, where the percentages in parentheses are the relative errors with respect to 
the linear analytic solution according to the catenary equations of the cable. The variables analyzed are the cable 
horizontal thrust H, the cable’s length S, the traction at support A TA and the angle with the horizontal θmax, as 
shown in Figure 3. The number of degrees of freedom is Ndof and Ncond is the condition number of the stiffness 
matrix obtained in the last iteration. All the results of the GFEM and HFEM linear analyses were obtained using 
only one element. 

According to Table 1, the results obtained by GFEM were overall good. When enriched with the cosine 
functions 𝐹𝐹𝐹𝐹𝑖𝑖, the GFEM presented all errors less than 2.2412%, regardless of the number of degrees of freedom. 
Considering GFEM 𝐹𝐹𝐹𝐹4, 𝐹𝐹𝐹𝐹5 and 𝐹𝐹𝐹𝐹6, all errors were smaller than 0.1169%, with GFEM 𝐹𝐹𝐹𝐹6 achieving the best 
results for every studied variable when compared to the solutions of the standard FEM, HFEM and GFEM. 

The 𝐹𝐹𝐹𝐹𝑖𝑖 outperformed the 𝐹𝐹𝐹𝐹𝑖𝑖 analyses when comparing solutions with the same number of degrees of 
freedom, that is, GFEM 𝐹𝐹𝐹𝐹3 results were better than GFEM 𝐹𝐹𝐹𝐹3, GFEM 𝐹𝐹𝐹𝐹4 results were better than GFEM 𝐹𝐹𝐹𝐹4 
and so forth. However, GFEM 𝐹𝐹𝑐𝑐4, for example, did not outperform HFEM 𝐿𝐿5 and HFEM 𝐿𝐿4, when both the 
hierarchical solutions had not only fewer or equal number of degrees of freedom, but also lower condition number 
of the stiffness matrix. 

 
 

L = 40 m 
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Table 1. Results. Cable subjected to self-weight. 

Solution 𝐻𝐻 (N) 𝑆𝑆 (m) 𝑇𝑇𝐴𝐴 (N) 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  (°) 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Iterations 
Linear analytic 171.445713 42.306960 201.445713 -31.671051 - - - 

FEM 
(2 elements) 

171.445712 41.761265 178.994746 -16.699423 1 1.00E+00 4 
(0.0000%) (1.2898%) (11.1449%) (47.2723%)    

FEM 
(10 elements) 

171.445712 42.285503 195.642091 -28.798030 9 3.99E+01 4 
(0.0000%) (0.0507%) (2.8810%) (9.0714%)    

HFEM 𝐿𝐿2 
172.345656 42.284638 200.982527 -30.961229 1 1.00E+00 5 
(0.5249%) (0.0528%) (0.2299%) (2.2412%)    

HFEM 𝐿𝐿3 
172.345656 42.284638 200.982527 -30.961229 2 1.00E+00 5 
(0.5249%) (0.0528%) (0.2299%) (2.2412%)    

HFEM 𝐿𝐿4 
171.443268 42.307077 201.431692 -31.665910 3 1.00E+00 4 
(0.0014%) (0.0003%) (0.0070%) (0.0162%)    

HFEM 𝐿𝐿5 
171.443268 42.307077 201.431692 -31.665910 4 1.00E+00 4 
(0.0014%) (0.0003%) (0.0070%) (0.0162%)    

GFEM 𝐹𝐹𝐹𝐹3 
172.345656 42.284638 200.982527 -30.961229 2 1.67E+00 5 
(0.5249%) (0.0528%) (0.2299%) (2.2412%)    

GFEM 𝐹𝐹𝐹𝐹4 
171.416348 42.307816 201.330971 -31.634017 4 2.86E+03 4 
(0.0171%) (0.0020%) (0.0570%) (0.1169%)    

GFEM 𝐹𝐹𝐹𝐹5 
171.447171 42.306970 201.434525 -31.665102 6 4.16E+05 4 
(0.0009%) (0.0000%) (0.0056%) (0.0188%)    

GFEM 𝐹𝐹𝐹𝐹6 
171.445592 42.307014 201.439258 -31.668140 8 3.52E+07 4 
(0.0001%) (0.0001%) (0.0032%) (0.0092%)    

GFEM 𝐹𝐹𝐹𝐹3 
177.251174 42.135844 195.946054 -25.231652 2 1.87E+00 5 
(3.3862%) (0.4045%) (2.7301%) (20.3321%)    

GFEM 𝐹𝐹𝐹𝐹4 
170.534648 42.330968 197.210808 -30.147795 4 3.03E+02 4 
(0.5314%) (0.0567%) (2.1023%) (4.8096%)    

GFEM 𝐹𝐹𝐹𝐹5 
171.568499 42.303626 200.832825 -31.319150 6 7.42E+03 4 
(0.0716%) (0.0079%) (0.3042%) (1.1111%)    

GFEM 𝐹𝐹𝐹𝐹6 
171.426363 42.307538 201.260864 -31.596162 8 2.71E+05 4 
(0.0113%) (0.0014%) (0.0918%) (0.2365%)    

 
The performance of the GFEM and HFEM were also satisfatory in relations to those of the standard FEM. 

Except for the horizontal thrust 𝐻𝐻, which the FEM analyses aproximated best, every other variable had better 
numerical results in GFEM and HFEM, especially when considering that the enriched and refined analyses had, 
at most, 8 degrees of freedom, and the best FEM mesh had 9 degrees of freedom.  

In Figure 4, the program time of execution is compared with the number of degrees of freedom. 

Figure 4. Program execution time. 
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As observed in Figure 4, the solution with the best presented results GFEM 𝐹𝐹𝐹𝐹6 also took the longest time to 
run. In general, GFEM 𝐹𝐹𝐹𝐹i took longer duration times when compared to GFEM 𝐹𝐹𝐹𝐹i and HFEM 𝐿𝐿i, among 
solutions with the same number of degrees os freedom, while the standard FEM solution were the fastest ones. 

4  Conclusions 

The enrichment functions used in the GFEM presented in this work were able to achieve satisfactory results 
while showing some advantages over the standard FEM. In general, most of the enriched solutions presented better 
results than those provided by the FEM with 9 DOFs, considering that the enriched analyses used only one element 
with, at most, 8 DOFs. 

 While GFEM 𝐹𝐹𝐹𝐹6 achieved the best numerical results, it was also the solution with the longest time of 
execution and also the highest condition number. Considering only the HFEM and GFEM, every analysis with at 
least three DOF took four iterations to converge the horizontal thrust 𝐻𝐻, when those with 2 or less DOF took 5 
iterations. 

Overall, the program time of execution increased according to the number of DOF, as expected, noting that 
the standard FEM analysis ran much faster than the enriched and refined ones. 
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