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Abstract. In this work, we propose a numerical formulation based on Isogeometric Analysis (IGA) for solving
two-dimensional problems of elasto-plastic solids at large displacements and small/moderate strains. The Isogeo-
metric Analysis aims to connect CAD (Computer Aided Design) concepts with the structural analysis method. In
this work, we employ basis functions generated from NURBS (Non-Uniform Rational B-Splines) to construct the
initial and also the final domains. The current positions are taken as main variables, so that the problem is naturally
under the isoparametric idea and also naturally considers geometric nonlinearities. The von Mises criteria is em-
ployed to detect plasticity occurrence and an additive elastic-plastic strains decomposition is adopted to represent
the elastic-plastic constitutive models. Finally, two-dimensional numerical examples are simulated considering
plane strain, in order to verify the proposed methodology.
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1 Introduction

The modeling of elasto-plastic materials has been a prominent topic within the international scientific com-
munity, as it is present in several engineering problems, for instance, in metal buildings that can collapse due
to the plasticity phenomenon. Hence, an accurate computational analysis of these problems can help ensure the
performance and safety of mechanisms and structures.

In the solid mechanics context, Coda and co-workers [1–5] developed the positional finite element formu-
lation, which considers current positions as main variables instead of displacements like in the traditional Finite
Element Method (FEM). This formulation naturally takes into account geometric non-linearity, so problems in-
volving finite displacements can be solved accordingly.

Aiming to integrate mechanical analysis and Computer Aided Design (CAD) tools, Hughes and co-workers
[6] introduced the Isogeometric Analysis (IGA). Such approach can be seen as an extension of the FEM and is
achieved by employing as basis functions, the same types of polynomials employed in CAD models (b-splines
and related functions). The IGA offers several advantages over traditional FEM including superior accuracy,
higher-order convergence rates, accurate geometrical model, higher-order continuity, simpler and efficient mesh
refinement strategies [6–9].

In this work, a position-based isogeometric formulation is developed for two-dimensional analysis of elasto-
plastic solids at large displacements and small/moderate strains using a total Lagrangian description. For this,
an additive elastic-plastic strains decomposition is employed to represent the elastic-plastic constitutive models
[10, 11] together with von Mises criteria to identify areas with plastic behavior.

2 Position-based isogeometric formulation

Let Ω0 and Ω1 denote, respectively, the initial (undeformed) configuration, of coordinates x, and the current
(deformed) configuration, of coordinates y, of a deformable solid, so that a configuration change function f(x)
maps the continuum points from Ω0 to Ω1. Then, we can define the Green-Lagrange strain tensor, which can take
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into account rigid body motion, by the following expression:

E =
1

2
(ATA− I), (1)

where A is the gradient of f(x) with respect to initial configuration.
For elasto-plastic materials at small/moderate strains, the additive strain decomposition can be adopted, so

that the Green-Lagrange strain tensor is decomposed by

E = Ee + Ep, (2)

in which Ee and Ep are, respectively, the elastic and plastic parts of E, as shown in [10, 11].
In order to get the vector function f(x), we map initial and current configurations from the dimensionless

parametric coordinates ξ by functions fh0 and fh1 (see Figure 1) according to:

fh0 (ξ) = xh(ξ) = Nβ(ξ)xβ and (3)

fh1 (ξ) = yh(ξ) = Nβ(ξ)yβ , (4)

where xβ and yβ denote respectively the initial and current position of each control point β, and Nβ is the Non-
Uniform Rational B-Splines (NURBS) basis function associated with control point β. Furthermore, the super-
script h indicates an field approximated by the isogeometric discretization.

Figure 1. Mapping of nodal positions.

By mapping the initial and current configurations, it is possible to write the gradient of fh as proposed by
[4, 5]

Ah = A1h ·
(
A0h

)−1
, (5)

where the tensors A0h and A1h are, respectively,

A0h
ij =

∂fh0
∂ξj

=
∂Nβ
∂ξj

(xi)β and (6)

A1h
ij =

∂fh1
∂ξj

=
∂Nβ
∂ξj

(yi)β . (7)

Therefore, the Green-Lagrange strain tensor can be determined for any point in the isogeometric discretization
as a function of control point position variables, so we can also determine the second Piola-Kirchhoff stress tensor
by:

Sh =
∂Ψh

∂Eh
, (8)

with Ψh being the Helmholtz free energy, defined by the constitutive model.
The solid mechanics problem in this work is based on the principle of stationary total potential energy re-

garding current positions (see [1, 2, 4, 12] for more details), which results the following equilibrium equation:

f intβ + f inerβ + f extβ = 0, (9)

where f extβ is the external forces vector applied in the initial configuration. On the other hand, f intβ and f inerβ are
respectively the vectors of internal and inercial forces, written as
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f intβ =

∫
Ωh

0

Sh :
∂Eh

∂yβ
dΩh0 and (10)

finerβ =

∫
Ωh

0

ρNαÿαNβ dΩh0 , (11)

with ρ and ÿα being the material density and the acceleration vector of control point α, respectively.
In this work, the non-linear system with time dependence resulting from (9) that can be written entirely in

terms of control point position variables is solved by Newton-Raphson procedure and Newmark time integration
scheme.

2.1 Isogeometric discretization

In isogeometric analysis, the basis functions used to represent the design geometry and to approximate the
mechanical fields are B-splines functions or one of its variants. In this work, we use NURBS functions, which are
the predominant technology in CAD. So basic knowledge of the NURBS basis functions is briefly presented in this
subsection. For a detailed description, we refer readers to the standard textbook [13].

For an one-dimensional domain, let us define a knot vector as a set of non-decreasing coordinates in the
parametric space, written as Ξ = {ξ1, ξ2, ..., ξn+p+1}, whereby ξi is the ith knot, n and p are, respectively, the
number and the order of the B-spline basis function. With a given knot vector Ξ, the ith B-spline basis function of
order p, denoted as Ni,p(ξ), can be defined recursively as follows (see e.g. [13]):

Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise
for p = 0, and (12)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) for p ≥ 1. (13)

The one-dimensional NURBS basis functions Ri,p are constructed by a weighted average of the B-spline
basis functions as follows:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
k=0Nk,p(ξ)wk

, (14)

where Ri,p is the ith NURBS basis function of order p, associated to the ith control point, while wi is the weight of
the ith control point.

In order to extend NURBS representation to the two-dimensional case, one can perform the tensor product of
two one-dimensional sets of Ni,p(ξ1) and Mj,q(ξ2) B-spline basis functions and then apply the weighting average
procedure, resulting:

Rp,qi,j (ξ1, ξ2) =
wi,jNi,p(ξ1)Mj,q(ξ2)∑n

k=0

∑m
l=0 wk,lNk,p(ξ1)Ml,q(ξ2)

, (15)

where Rp,qi,j is the NURBS basis function of order p and q in the ξ1 and ξ2 directions. Besides, this function is
associated with the control point of indexes i in ξ1 direction and j in ξ2 direction.

In order to apply in the solid mechanics formulation, a different index β(i, j) is given for each control point
initially identified by the indexes i and j, so that the shape function Nβ presented in the previous equations is
written as

Nβ(i,j)(ξ) = Rp,qi,j (ξ) . (16)

3 Elasto-plastic constitutive model

Based on rheological models, the Helmholtz free energy Ψ is additively decomposed into an elastic part Ψe,
which depends only on the elastic strain, and a plastic part Ψp, which depends on the plastic strain and on the
hardening parameter (κ). In this work, only isotropic hardening is considered, so that Ψ is written as

Ψ(Ee, κ) = Ψe(Ee) + Ψiso
p (κ). (17)
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In this context, we define the elastic stress tensor and the yield stress, respectively, as

Se =
∂Ψe

∂Ee
and σκ =

∂Ψiso
p

∂κ
, (18)

where, in this work, Ψe assumes the Saint Vennant-Kirchhoff constitutive model, which results

Ψe = Gtr(Ee ·Ee) +
λ

2
tr(Ee)2, (19)

with G and λ being the shear modulus and the Lamé constant, respectively. For the yield stress, the following
linear rule is adopted:

σκ(κ) = σY +Kpκ, (20)

where σY is the initial yield stress and Kp is the plastic modulus of isotropic hardening.
The internal dissipation rate is given by the second law of thermodynamics, in the form of the Clausius-

Duhem inequality:

dint = S : Ė− Ψ̇ ≥ 0, (21)

that after some algebraic manipulations, enable us define the second Piola-Kirchhoff stress S as [14]

S = Se. (22)

In the present work, we employ the von Mises yield criteria, which is one of the most representative and
widely applied criteria for ductile materials and is written as

Φ(S, σκ) =‖ SD ‖ −
√

2

3
σκ ≤ 0, (23)

where SD denotes the deviatoric part of the tensor S. The yield criteria defines the elasticity limit, so that the
regime is purely elastic and the plastic variables are not updated when Φ < 0. On the other hand, if Φ > 0, the
plastic variables need to be updated, in order to make Φ = 0 and ensure the point is currently on the yield surface.
For this, the evolution of the plastic variables is controlled by a plastic multiplier γ̇ together with Φ. Following the
Kuhn–Tucker condition, the relationship between γ̇ and Φ is given by

γ̇Φ = 0. (24)

The equation that represent the plastic evolution are written as:

Ėp = γ̇Np and κ̇ = γ̇

√
2

3
, (25)

with Np given by the flow rule, which is calculated, in this work, by

Np =
SD

‖ SD ‖
. (26)

4 Numerical example

In this section, two numerical examples are presented to evaluate the proposed elasto-plastic model. In both
examples, domains are isogeometrically discretized with cubic NURBS (p = q = 3) and plane strain condition is
considered. As reference, we use the numerical solution obtained by the commercial software ANSYS, where the
problem is simulated using a refined quadratic finite element mesh.

4.1 Elliptical arch

The first example considers the elliptical arch presented in Figure 2(a) (units in centimeters), with the the
following material properties: Young’s modulus E = 210 GPa, Poison’s ratio ν = 0.25, yield stress σy =
150 MPa and plastic modulus Kp = 70 GPa. Figure 2(b) shows the evolution of the static force P applied to
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(a) geometry and boundary conditions
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Figure 2. Elliptical arch.

the arch, being positive downwards. In order to simulate this problem, the domain is discretized by two NURBS
patches, with 128 cells and 345 control points (see Figure 2(c)).

Figure 3 shows the obtained displacement in the center of the arch for the applied load P , comparing with
the results from ANSYS program, where the problem is simulated using a finite element mesh with 744 elements
and 1861 nodes. As one can see, the numerical results are practically the same.
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ANSYS Present work

Figure 3. Force-displacement diagram.

4.2 Cantilever beam

In this example, a cantilever beam subjected to a distributed load, as depicted in Figure 4(a), is simulated.
This beam has dimensions 10 m × 1 m × 1 m and mechanical properties: E = 200 GPa, ν = 0.3, σy = 250 MPa
and Kp = 40 GPa. Figure 4(b) shows the isogeometric mesh used to simulate the problem that is composed by 1
NURBS patch, with 90 cells and 198 control points. As reference, we also simulate this problem in the ANSYS
program using a finite element mesh with 1907 nodes and 898 elements.

This problem is simulated considering three different loading-unloading cases, one static (Figure 5(a)) and
two dynamic (Figures 5(b) and 5(c)) with material density ρ = 8000 kg/m3 and time increment ∆t = 0.25 ms.
In Figure 6, we compare the obtained displacement at the end of the beam to results from ANSYS for the static
case. One can see that the analysis coincides with the reference until the end of the second loading cycle, when,
possibly, the different strain measures used in the two analyzes affect the problem solution. Finally, Figure 7 shows
the displacements magnitude over the simulated time for the dynamic cases, and the obtained results are in good
agreement with te reference.
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(a) geometry and boundary conditions

(b) isogeometric mesh

Figure 4. Cantilever beam.
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Figure 5. Simulated loading-unloading.

5 Conclusions

In this work, we present and implement a numerical approach for 2D modeling of elasto-plastic solids at
large displacements and small/moderate strains, considering plane strain. Such approach considers only linear
isotropic hardening, but a perfect elasto-plastic material model can also be considered making Kp = 0, so that
the developed computational code is able to simulate a large number of engineering problems. The proposed
formulation allows conserving NURBS geometric representation from design, which allows to simulate complex
geometry problems without the need for a well-defined mesh. In this sense, the resulting computational program
has been applied to simulate a cantilever beam subjected to static and dynamic load. As can be seen in section 4,
good correspondence between the obtained results with the results of the ANSYS program is observed throughout
the plasticity phenomenon.

Acknowledgements. The authors would like to acknowledge the Brazilian agency National Council for Scientific
and Technological Development (CNPq) and the Coordenação de Aperfeiçoamento de Nı́vel Superior (CAPES)
for the financial support given to this research.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] H. Coda and M. Greco. A simple fem formulation for large deflection 2d frame analysis based on position
description. Computer Methods in Applied Mechanics and Engineering, vol. 193, n. 33, pp. 3541 – 3557, 2004.
[2] M. Greco, F. A. R. Gesualdo, W. S. Venturini, and H. B. Coda. Nonlinear positional formulation for space
truss analysis. Finite Elements in Analysis and Design, vol. 42, n. 12, pp. 1079 – 1086, 2006.
[3] M. Greco and H. Coda. Positional fem formulation for flexible multi-body dynamic analysis. Journal of Sound
and Vibration, vol. 290, n. 3, pp. 1141 – 1174, 2006.
[4] H. B. Coda and R. R. Paccola. An alternative positional fem formulation for geometrically non-linear analysis
of shells: Curved triangular isoparametric elements. Computational Mechanics, vol. 40, n. 1, pp. 185–200, 2007.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



R. J. R. Rosa, R. A. K. Sanches

0.0 0.5 1.0 1.5 2.0 2.5

−10

−5

0

5

10

Displacement (m)

P
(M

P
a)

ANSYS Present work
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