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Abstract. This work aimed to implement polynomial and discontinuous enrichment functions, according to the
strategy of the Stabilized Generalized Finite Element Method (SGFEM), to simulate mixed-mode failure problems
in structures. The mixed-mode model was formulated and developed based on a bilinear damage model for quasi-
brittle materials. The results were verified by comparison with experimental curves drawn from test results from
the four-point shear test. The computational efficiency and accuracy of the polynomial and discontinuous SGFEM
were then tested to improve the prediction of the failure behavior over a conventional Finite Element analysis,
especially for coarser meshes. The results showed that the proposed models had accuracy equivalent to others
found in the literature but employing a much smaller number of elements and degrees of freedom.

Keywords: SGFEM, Discontinuous Enrichment, Polynomial Enrichment, Continuum Damage Mechanics, Quasi-
brittle materials.

1 Introduction

The Structural engineering has great interest in the phenomena of fracture and damage. There are various
models to describe the failure process, for example, the Fracture Process Zones (FPZ) [1, 2]. The discontinuous
approach to failure processes is handled by the Fracture Mechanics (FM). Some of the strategies used to idealize
the behavior of the fracture zone are the Cohesive Zone Models (CZM), proposed initially by Barenblatt [3] and
Dugdale [4] and considering that all non-linearities of FPZ occur in a cohesive zone in front of the crack tip.
The phenomenon of development, growth, coalescence and propagation of cracks is handled by the Continuum
Damage Mechanics (CDM) using concepts of Continuum Mechanics (CM).

Recent research has combined continuous and discontinuous approaches to model damage and crack propa-
gation in 2D domains, applying continuous-discontinuous damage models (C-DDM). Works in this line have been
successful, achieving excellent results, by combining characteristics of CDM and FM, as well as using the advan-
tages of Partition of Unit (PU) Methods, such as Generalized Finite Element Method (GFEM) and Extended Finite
Element Method (XFEM) [5–7].

A new approach recently presented by Babuška and Banerjee [8] and Babuška and Banerjee [9] to 1D do-
mains, the Stabilized Generalized Finite Element Method (S/GFEM) aims to improve the conditioning of the
GFEM stiffness matrix. This work implemented SGFEM formulations applied in the analysis of structures in
damage process under mixed-mode fracture. Polynomial and discontinuous enrichment functions were used to
simulate structural failure problems using a bilinear continuous-discontinuous damage model proposed by Evan-
gelista Jr. and Moreira [7]. The main purpose of enrichment is to improve the response obtained in simulations
using coarse meshes.
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2 The Stabilized GFEM (S/GFEM)

The Generalized Finite Element Method (GFEM) was initially proposed by Babuška et al. [10] under the
name of Special Finite Element Method. The construction of the shape functions of the GFEM (Φαi) can be
defined, mathematically, as a combination, at each node xα of the domain, between the standard shape functions
of the FEM (Nα) and linearly independent functions Lαi called enrichment functions where Lαi = {1, Lα1, Lα2,
..., Lαq} a generating basis for a space of functions χα(ωα) defined over ωα. Variabel q is the total number of
enrichment functions relative to node xα and α = {1, ..., n}, is the number of nodal points x. Therefore, we have
φαi = Nαlαi. Through this functional product it is possible to determine the approximation of the displacement
field (ũ(x)) according to the following equation (where aα and bαi are, respectively, the degrees of freedom (DOF)
of the structure associated with node xα and the additional DOF corresponding to each enrichment function):

ũ(x) =

n∑
α=1

Nα(x)

{
aα +

q∑
i=1

Lαi(x)bαi

}
(1)

The Lαi functions can be polynomial or not. In this work, the polynomial monomials used were constructed
hierarchically using the Pascal triangle according to the following format (In this work the enrichment function
sets were constructed using the extreme terms of the Pascal Triangle):

L(p, q) =
(X −Xj)

p(Y − Yj)q

hp+q
(2)

where Xα, Yα are the coordinates of node xα in the 2D space where the enrichment is applied; X and Y are the
coordinates of the Gauss points on each element; p and q are the powers that determine the degree of enrichment;
and h acts as a normalizer [11].

In analyzes with discontinuities, the application of discontinuous enrichment functions arises, due to their
ability to describe the ”displacement jump” that occurs in the crack opening region. In these cases Lαi(x) (in
Eq. 1) is replaced by the Heaviside function H(x).

Babuška and Banerjee [8] and Babuška and Banerjee [9] presented a new approach for 1D domains, the
SGFEM. It is a modification of the GFEM functions to create a new enrichment space that aims to improve the
conditioning of the stiffness matrix. This is done by a simple local alteration of the enrichments used in the GFEM
used to build the approximation spaces χ̃α, where α ∈ Ieh, bulding the modified enrichment function of SGFEM
(L̃αi), according to the following equation:

L̃αi(x) = Lαi(x)− Iωα
(Lαi)(x); χ̃α = span{L̃αi}mα

i=1 (3)

Note that the bilinear portion Iωα(Lαi)(x) of the enrichment function Lαi, applied to the node ωα, is subtracted
from it. It is reasonable to note, therefore, that the term Lα1 should be omitted because it returns null values.

2.1 Continuous-discontinuous damage model

In this work were used a damage model proposed in Evangelista Jr. and Moreira [7], applied to quasi-brittle
materials under loading conditions that produce crack propagation under mode I or mixed mode. The model are
defined by the following hypotheses: the material is considered an elastic medium in damage process (plastic
deformations are not considered); the damage occurs due to extensions along of the main stress directions; an
isotropic damage behavior for the material is assumed, represented by a scalar variable D (0 ≤ D ≤ 1).

In order to guarantee thermodynamic compatibility, it is necessary to establish a control variable. In cases of
mixed-mode fracture the equivalent strain of Von Mises (εVMeq ) is presented in the literature as a good alternative
[7, 12, 13]. The εVMeq is calculated as follows:

εVMeq =
k − 1

2k(1− 2ν)
Iε1 +

1

2k

√
(k − 1)2

(1− 2ν)2
I2ε1 +

6k

(1 + ν)2
Jε2 (4)
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where ε is the strain tensor; Iε1 = tr(ε) is the first invariant of the strain tensor; Jε2 = tr(ε · ε) - 1/3 (tr2(ε)) is the
second invariant of the strain tensor; k is the ratio between the compressive (fc) and tensile (ft) strengths; ν is the
Poisson coefficient.

The idealized model of fracture process zone (described by a stress-strain relationship σ - ε) is illustrated
by the Fig. 1(a). The softening law starts to act as soon as the material reaches its mechanical tensile strength
(ft) [14, 15]. The initial fracture energy (Gf ) dissipates while the paste-aggregate interaction remains imposing
some resistance to crack opening. This step defines the first slope of the model curve, the kink point ψ and by
the deformation εk. A macro crack arises (a force-free surface) when the crack opening displacement reaches the
magnitude εf . Finally, the total fracture energy (GF ) and the ft define the maximum load (Pmax) of the structure
[2, 16, 17].
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Figure 1. Softening behavior and damage model: a) Constitutive relation force-displacement and equivalence of
strains as a function of the characteristic length lc (adapted from Evangelista Jr et al., 2013); b) Determination of
the crack propagation direction in the strategy (C-D) (adapted from Simone et al., 2003).

When the damage value at the Gauss points integration (i) of the element in front of the crack tip is greater
than Dcrit a discontinuity is inserted as a straight line inside the element. The nodes of the elements cut by the
crack are enriched with discontinuous enrichment according to Eq. 1 (so replacing Lαi(x) by H(x)). The crack
propagation direction (rSd) is then calculated according to equations below:

rSd =
∑
iεS

Diwi
ri
||ri||

; wi =
1

l3(2π)3/2
exp

(
− ||ri||

2

2l2

)
(5)

where: S represents the domain (element outline) to which the set of integration points i belong within a semicir-
cular V-shaped scanning area (Fig. 1(b)) and, belonging to the elements whose face contain the crack tip [13]; Di

is the damage value at Gauss point i; ri is the direction vector that links the crack tip to the integration point i; wi
is a weight associated with the integration; l is equal to three times the typical size of the element. More details
about the entire computational implementation of this work can be found in Paiva [19] and Evangelista Jr. and
Moreira [7].

3 Numerical simulations

The test performed was the beam under shear at four points with central notch, or Four Point Shear - Single
Edge Notch (FPS-SEN). Numerical tests were performed using displacement control. The results for conventional
cementitious materials were compared with experimental results extracted from Schlangen [20]. Fig. 2(a) illus-
trates the geometry used for this shear test. Geometric, fracture parameters and material-related data are specified
in Tab. 1. First, a reference simulation (with a refined mesh) was made to calibrate the discrete model in which were
used for the simulation a finite element mesh with 3447 constant strain triangle (CST) elements was used, which
can be seen in detail in Fig. 2(b) (were used Dcrit = 0.99). The simulations were performed using displacement
control. The nonlinear problem of each displacement step were solved with the Secant Method.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Application of polynomial and discontinuous SGFEM for analysis of structures in damage process under mixed-mode fracture

 𝑃/11 10𝑃/11 

1
0
0

 

440 

20 20 

20 20 

5 

20 

(a)

 

(b)

Figure 2. FPS-SEN model: a) Model geometry, loading and boundary conditions - thickness = 100mm (all dimen-
sions in mm); b) Reference finite element mesh - 3447 elements.

Table 1. Fracture and material-related parameters for FPS-SEN.

Fracture Parameters Material parameters

GF (N/m) Gf (N/m) Ψ E (MPa) ft (MPa) ν

100,0 34,0 0,25 35000 3,0 0,20

Fig. 3(a) presents the results of curves relating force (P) and Crack Mouth Sliding Displacement (CMSD). It is
observed that the results of P-CMSD curves are in good agreement with the experimental data. The abrupt change
of the curve derivative occurs due to the finite element crack. Strategies that allow the element to be partially cut
or that use a cohesive law may soften this effect. The crack path (Fig. 3(b)) is highlighted in full compliance with
the result obtained by Schlangen [20] (Lab). After observing the functionality of the modeling, simulations were
performed with SGFEM and a coarser mesh.

 

(a)

 

(b)

Figure 3. Experimental and numerical results for the reference mesh with 3447 elements and continuous-
discontinuous damage model: (a) P-CMSD curves; (b) Overlap between experimental [20] and numerical cracking
pattern.

For simulation with SGFEM were used a mesh with 106 CST elements similar to the one presented in Paiva
[19] (Fig. 4). Simulations without enrichment (approximation of order P0) were performed. Using the same
mesh refinement simulations were performed with application of polynomial enrichment for local approximation
of degrees two, three, four and five (approximations P2, P3, P4 and P5, respectively). The Pn nodes indicate
where there was application and variation in the degree of enrichment and Dcrit = 0.99.

 

P0 Pn 

Figure 4. Finite element mesh and enrichment strategy - 106 elements [19].
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Fig. 5(a) presents the results of P-CMSD curves. It is observed that the results are in good agreement with
the experimental data when the enricment is applied. It is also noted that the derivative changes of the curves are
more abrupt when the polynomial degree of enrichment increases. This is due to the fact that the cut elements
are very large. This fact is confirmed by the curve referring to P2 which presents softening more in line with the
experimental data precisely because there was no crack propagation in this case.
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Figure 5. Experimental and numerical results for mesh with 106 elements and continuous-discontinuous damage
model: (a) P-CMSD curves; (b) Overlap between experimental [20] and numerical cracking pattern.

It is intuitive to note that, in the event of propagation, nodes enriched with both polynomial and discontinuous
enrichment will appear. This makes it possible to analyze the performance of coupled enrichments, as well as the
advantages and disadvantages of the strategy. Fig. 6 shows the fracture (when it occurs) as a function of the degrees
of polynomial enrichment applied. It is observed that in the P0 simulation there is no propagation. This is because
the required Dcrit is not met. The same happens in simulation P2. In the other cases, however, it is noted that
there was propagation, a fact that occurs due to the better description of the stress-strain field in the enriched areas.
Therefore, the presentation of damage becomes more appropriate.

     

P0 P2 P3 P4 P5 

Figure 6. Fracture propagation as a function of polynomial enrichment degrees.

Tab 2 presents the number of Degrees of Freedom (nDOF) and the total number of iterations used to solve the
nonlinear problems for each performed simulations. It is observed that numerical experiments with coarse mesh
have a much lower nDOF than the reference mesh. Taking into account that for the simulation with P5 a mesh with
approximately 70 (seventy) times fewer elements was used than in Simone et al. [13] and approximately 8-eight
times less than in Evangelista Jr. and Moreira [7], the great capacity of the polynomial SGFEM to also describe
the behavior of structures in the process of damage under mixed fracture mode is established.

Table 2. Total number of iterations and degrees of freedom for each mesh as a function of enrichment.

Mesh
nDOF Total number of iterations

P0 P2 P3 P4 P5 P0 P2 P3 P4 P5

106 Elements 150 262 406 534 662 4510 8377 8739 3674 5309
3447 Elements 3572 - - - - 2460 - - - -

Fig. 7 shows the evaluation of the computational efficiency of the simulations performed, with N it being
the number of iterations accumulated per step, Nnorm

p the number of the step normalized by total number of
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displacement steps of the simulation and nDOF tot the total number of degrees of freedom processed until the
completion of the simulation. The part of the bars in blue color indicates the portion of the nDOF tot associated
with the standard FEM, while the other in yellow color indicates the amount of nDOF tot associated with the
SGFEM.
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Figure 7. Evaluation of computational efficiency - comparison between reference simulation and SGFEM.

It is possible to notice in Fig. 7(b) that, normally, the nDOF tot is higher in simulations with a higher poly-
nomial degree of enrichment, since there is a greater amount of polynomials composing the set (each function
represents one more DOF in the node in each dimension of space, therefore, in 2D space, two more degrees per
node and in 3D, three). However, it is observed that in all cases the SGFEM showed efficiency compared to the
reference simulation with the refined mesh since all presented lower nDOF tot.

It is observed that, normally, simulations with a higher polynomial degree of enrichment need fewer iterations
per step to converge (P4 and P5 curves, for example, are closer to the reference). The P4 presented in this case
the better result, showing the amount of iterations lower than the P0 (remembering that the last one did not present
satisfactory results, neither in terms of P-CMSD curve nor crack propagation).

4 Conclusions

This work addressed the implementation and application of SGFEM, using polynomial and discontinuous
enrichment functions for prediction and evaluation of damage in structures under mixed-mode of fracture. The
results proved the efficiency of the polynomial and discontinuous SGFEM to predict the failure process, even
using a coarse mesh in the simulation. The discontinuous SGFEM was able to capture well the damage process of
the structure due to the existence of the crack, as well as it was possible to observe coherence regarding the crack
path.

The simulations using SGFEM, in general, showed better computational performance than the reference
counterpart using FEM and refined mesh, even with a higher number of iterations to solve the system of equations
e each displacement step. This difficulty is probably due to the introduction of spurious terms in the stiffness
matrix by the blend elements, a harmful effect potentiated by the increase in the polynomial degree of the enriching
functions. However, it is observed that the polynomial+heaviside coupling worked very well.

Therefore, it is concluded that the SGFEM has an enormous capacity to improve the quality of the final
approximation, with the rational use of enrichment functions, in coarse meshes, combining characteristics such
as flexible modeling, convergence and computational efficiency. The application of the discontinuous strategy
ensured enormous versatility to the tests, as it eliminates the need to use special elements or even remeshing (as
in other strategies). The combination of polynomial and/or discontinuous SGFEM strategies, combined with the
damage model, proved to be very efficient to predict the damage distribution and crack path in structures under
mixed-mode fracture.
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