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Abstract. The Generalized Finite Element Method (GFEM) is a Galerkin approach that generates numerical ap-
proximations belonging to a space obtained by augmenting FEM spaces with enrichment functions capable of
representing well local behaviors of the problem solution. The method has already proved to accurately solve
different classes of problems, including those within the linear elastic fracture mechanics context. For these
problems, GFEM shape functions can represent both the discontinuous and singular behaviors of cracks by a
convenient choice of enrichment functions. Regarding convergence and conditioning aspects, recent works have
proposed well-conditioned and optimally convergent first-order approximations based on GFEM enrichments. In
this work, an initial version of a well-conditioned quadratic GFEM for problems of fracture mechanics is presented.
The methodology consists of using a quadratic Partition of Unity (PoU) to combine local approximation spaces.
A two-dimensional (2-D) numerical experiment with a linear elastic fracture mechanics problem is presented to
demonstrate that the proposed formulation delivers optimal convergence and well-conditioned systems of equa-
tions. Moreover, the robustness of the proposed approach is also demonstrated by showing that the stiffness matrix
conditioning is preserved even for some critical situations regarding the relative position between the mesh and the
crack line.
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1 Introduction

The Generalized Finite Element Method (GFEM), as in Duarte et al. [1] and Strouboulis et al. [2], has proved
to effectively and accurately solve classes of problems that present challenging behaviors for standard method-
ologies, such as the Finite Element Method (FEM). One of the main features of the GFEM is that it can insert
into its numerical approximations functions that can represent well some special local behaviors of the problem
solution. As already reported extensively in the literature, problems within the Linear Elastic Fracture Mechanics
(LEFM) can highly benefit from this feature. In particular, both the discontinuous and singular behaviors related
to cracks can be added to the approximation using a proper choice of enrichment functions, which augment the
standard FEM approximation space. Among other improvements, this fact largely alleviates some of the require-
ments related to mesh generation and regeneration, as in crack propagation problems, for instance, since the mesh
no longer needs to fit the crack. In addition, reduced error levels and higher rates of convergence than the FEM
can be attained when using the GFEM.

As reported by Zhang et al. [3] and Babus̆ka et al. [4], three features are important to develop a stable GFEM
formulation: optimal convergence, stiffness matrix conditioning similar to the FEM formulation, and robust condi-
tioning. This last feature guarantees that the conditioning does not depend on relative positions between the mesh
and the crack line for problems within the LEFM, for instance. Recent works have already shown the good ca-
pacity of the GFEM to deliver optimal first-order convergent solutions with well-behaved and robust conditioning,
as in Sanchez-Rivadeneira and Duarte [5] and Cui and Zhang [6]. In particular, the work of Sanchez-Rivadeneira
and Duarte [5] developed a simple approximation using shifted Heaviside functions and the discontinuous sta-

CILAMCE-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



A quadratic GFEM formulation for fracture mechanics problems

ble GFEM (DSGFEM), see Sanchez-Rivadeneira and Duarte [7], for the branch functions. Moreover, in Cui and
Zhang [6], based on the work of Zhang et al. [8], different Partitions of Unity (PoUs) and other techniques are used
to control the stiffness matrix conditioning.

Laborde et al. [9] can be considered as one of the first works dedicated to the development of higher-order
convergent approximations for problems within the LEFM context. The methodology adopted by the authors intro-
duced the use of quadratic PoUs to reach higher-order convergence, but the final approximation led to sub-optimal
convergence or badly-conditioned stiffness matrices. This was due to its choice of enrichment functions. More re-
cent works still focus on finding a good enriched space that delivers higher-order convergence, such as in Sanchez-
Rivadeneira and Duarte [7] and Sanchez-Rivadeneira et al. [10] for fracture mechanics problems, and in Zhang
and Babus̆ka [11] for interface problems. However, to the best of our knowledge, alternatives for higher-order ap-
proximations are still under investigation. Therefore, a quadratic formulation based on the use of quadratic PoUs,
similar to one of the strategies proposed by Sanchez-Rivadeneira and Duarte [7], is investigated herein. Based on
some numerical experiments, it is shown that the formulation presents the required features to be considered stable.

Following this introduction, Section 2 presents the weak formulation of the LEFM problem which is inves-
tigated throughout this work. Section 3 details the quadratic GFEM used to approximately solve that class of
problem. Then, Section 4 illustrates the two-dimensional (2-D) numerical experiment conceived, as well as the
main results and discussions. Finally, Section 5 summarizes the main conclusions.

2 Fracture mechanics problem

In this section, the LEFM problem to be investigated is defined. Consider a body Ω̄ ⊂ R2, with boundary ∂Ω
in which a traction t̄ is applied. This is a Neumann boundary value problem. It is assumed that the body contains
a crack Γc, considered herein as traction-free. The variational, or weak, formulation for this class of problems can
be given by:

Find u ∈ E(Ω) such as, for all v ∈ E(Ω),

B(u,v) = L(v), (1)

with

B(u,v) =

∫
Ω

σ(u) : ε(v) dS and L(v) =

∫
∂Ω

t̄ · v ds. (2)

For more details regarding this formulation, see the work of Szabo and Babus̆ka [12]. The space E(Ω) ⊂
(H1(Ω))2 is the well-known energy space, in which the following energy norm can be defined:

∥u∥E(Ω) =
√
B(u,u) <∞. (3)

3 Quadratic GFEM

The GFEM is a Galerkin approach that generates numerical approximations belonging to a space obtained by
augmenting a standard FEM space SFEM with functions capable to represent well local behaviors of the problem
solution. These functions are known as enrichment functions and, combined with a Partition of Unity, are used to
generate the enriched space SENR. Therefore,

SGFEM = SFEM + SENR. (4)

The objective herein is to generate a quadratic approximation û ∈ SGFEM, therefore delivering a convergence
rate of relative errors in the energy norm, with respect to the finite element size, equals to 2.

Thus, to span the SFEM space a quadratic basis is herein adopted, i.e.,
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SFEM =

n∑
α=1

uα ψα(x), with uα ∈ R2 (5)

and ψα(x) a quadratic PoU. Herein, this PoU is the set of conventional FEM shape functions that has the Kro-
necker’s delta property and it is attached to 6-node triangular finite elements. In Eq. (5), n represents the total
number of nodes that accounts for both vertex and edge nodes.

3.1 Enriched space for LEFM

The enriched space SENR in the LEFM context must be able to represent the following behaviors: the crack
discontinuity and the crack tip singularity. This enriched space can, thus, be accordingly split into two subspaces:
SD
ENR and SS

ENR.

First, the space SD
ENR is devoted to representing the crack discontinuity and it is, in this work, generated using

shifted Heaviside enrichment functions, i.e.,

SD
ENR =

∑
α∈I1

ψα(x) (H(x)−H(xα))u
D
α , with uD

α ∈ R2 (6)

and H(x) representing the Heaviside function. This function is defined as follows: 1, if Γc ≥ 0, or −1 otherwise.
This enrichment function is applied at the set of nodes whose indexes are in I1, an index set given by:

I1 = {α ∈ I : ωα ∩ Γc ̸= ∅ and C /∈ ωα}. (7)

with I representing the index set of all mesh nodes, including both vertex and edge nodes, and C the crack tip. In
addition, ωα represents the cloud of node xα, which is given by the union of all the elements sharing this node.

On the other hand, the space SS
ENR is used to represent the crack tip singularity and it is generated, in this

work, based on the OD vector-valued branch functions, i.e.,

SS
ENR =

∑
α∈I2

ψα(x)

2∑
i=1

(
LS
αi(x)−Dωα

[LS
αi](x)

)
⊙ uS

αi, with uS
αi ∈ R2 (8)

and LS
αi(x) the OD branch functions. These functions represent the displacement behavior near the crack tip for

both opening Modes I and II, given by:

LS
α1 =

[√
r cos

θ

2

(
κ− 1 + 2 sin2

θ

2

)
,

√
r sin

θ

2

(
κ+ 1 + 2 cos2

θ

2

)]T
(9)

LS
α2 =

[√
r sin

θ

2

(
κ+ 1− 2 cos2

θ

2

)
,

−√
r cos

θ

2

(
κ− 1− 2 sin2

θ

2

)]T
, (10)

In the previous equations, (r, θ) corresponds to a local polar coordinate system attached to the crack tip (see
Fig. 1, next) and κ represents a material constant given by κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν)
for plane stress conditions. The functions LS

αi are assigned to the set of nodes whose indexes are in I2, an index
set given by:
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I2 = {α ∈ I : dist(C,xα) < rbr}, (11)

with rbr a discretization parameter.

In the expressions given by Eqs. (6) and (8), two strategies were already adopted to keep the stiffness matrix
conditioning under control, namely the Heaviside shifting and the subtraction from the OD branch functions of their
discontinuous interpolant. For a comprehensive explanation on how to compute this interpolant and implement it,
see the work of Sanchez-Rivadeneira and Duarte [7].

Remark 1: Stiffness matrix conditioning. It is well known that the conditioning of GFEM stiffness matrices can
be much worse than that of FEM matrices. This is caused when the adopted enrichment functions cause linear or
nearly-linear dependencies between the set of shape functions. The work of Babus̆ka and Banerjee [13] presents
a detailed explanation related to this topic. Here, the stiffness matrix conditioning is measured using its Scaled
Condition Number (SCN). The SCN K(K) can be computed as the ratio between the largest (λM ) and smallest
non-zero (λm) eigenvalues of the scaled matrix K̂, i.e.,

K(K) =
λM
λm

.

with K̂ij = Kij/
√
KiiKjj , and no summation on i, j. Herein, since pure Neumann problems are being analyzed,

the three first null eigenvalues are not accounted for because they are solely related to rigid body motions.

The corresponding numerical approximation generated by the space given by Eq. (4) can be understood as
an extension of the formulation proposed initially by Sanchez-Rivadeneira and Duarte [5], using now quadratic
PoUs to attain quadratic convergence rates. The approximation adopted herein is similar to what is presented in
Sanchez-Rivadeneira and Duarte [7] with strategy ES-B. However, a different set of numerical tests is performed
in the present work. They demonstrate, for the first time, the robustness of this quadratic approximation.

4 Numerical tests

4.1 Problem description

In this section, a two-dimensional LEFM problem is solved to illustrate the new quadratic GFEM. This pure
Neumann problem consists of a square panel Ω̄ = [0, 1]× [0, 1] containing a horizontal edge-crack Γc given by:

Γc = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 1/2 and x2 = 1/2 + δ}, (12)

with δ = 0 unless stated otherwise. The problem geometry and Neumann boundary conditions, as well as the
crack Γc, are illustrated in Fig. 1.

As material properties, an Young’s modulusE = 1 and a Poisson’s ratio ν = 0.3 are adopted, and plane strain
conditions are assumed. The traction applied at ∂Ω is computed from the first term of the asymptotic expansion
that is the solution of an infinite plate subjected to Mode I traction containing a horizontal crack, given by:

σI
11 =

1

4
√
r

(
3 cos

θ

2
+ cos

5θ

2

)
(13)

σI
22 =

1

4
√
r

(
5 cos

θ

2
− cos

5θ

2

)
(14)

σI
12 =

1

4
√
r

(
− sin

θ

2
+ sin

5θ

2

)
, (15)

with (r, θ) the polar coordinate system attached to the crack tip, as illustrated in Fig. 1 (left).
The problem is discretized using quadratic triangular finite elements, as shown in Fig. 1 (right). The mesh is

generated by subdividing each side of the panel by the following numbers of subdivisions:
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Figure 1. Problem geometry and Neumann boundary conditions (left), and the less refined adopted discretization,
with Ndiv = 17, (right) for the numerical problem. In the right figure, the blue dots represent the nodes enriched
with Heaviside functions and the red ones the nodes enriched with OD branch functions.

Ndiv = 2j+3 + 1, with j = 1, 2, 3, 4, 5. (16)

Once defined the number of subdivisions, a structured mesh of 6-node triangular elements can be constructed.
Finally, to define the regions where the enrichment functions are applied, the parameters C = (1/2, 1/2 + δ) and
rbr = 1/6 are adopted in Eqs. (7) and (11).

4.2 Results and discussions

First, the convergence of relative errors in the energy norm is evaluated. As already highlighted in Section 3,
a rate of convergence O(h2) is expected for the quadratic formulation presented in this work. The relative error in
the energy norm is computed using

ϵh =
∥u− û∥E(Ω)

∥u∥E(Ω)
=

√∫
Ω

(σ(u)− σ(û)) : (ε(u)− ε(û)) dS√∫
Ω

σ(u) : ε(u) dS

, (17)

with u the problem exact displacement solution, known from the LEFM.
The plot presented in Fig. 2 (left) illustrates the convergence of relative errors ϵh with respect to the finite

element size h−1 = Ndiv. In the plot, the dashed gray line represents the optimal rate β = 2. It can be seen that
the convergence rate tends to this optimal value as the mesh is refined, i.e., as h→ 0.

In addition, as also specified in Section 3, the growth rate of the stiffness matrix SCN K(K) is another
important quantity to be evaluated when assessing the new GFEM formulation. According to the works of Zhang
et al. [3] and Babus̆ka et al. [4], the conditioning growth rate should not be greater than the one obtained when
using the standard FEM, which is O(h−2) for 2-D Neumann problems. For that matter, Fig. 2 (right) illustrates
the SCN values for each one of the adopted approximations. Again, the dashed gray line represents the optimal
rate β = 2. It is important to say that controlled values of K(K) help to eliminate possible round-off errors and
convergence issues when solving the problem system of equations either directly or iteratively.

Finally, seeking at evaluating the robustness of the stiffness matrix conditioning, the following experiment is
performed: the crack is moved from its initial position, i.e., when δ = 0, up to the finite element edges, with the
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Figure 2. Convergence of relative errors in the energy norm (left) and growth of the stiffness matrix SCN (right)
with respect to the finite element size.

parameter δ in Eq. (12) computed as
δ = h× (1− 2 j) / 2,

with j = 0,−2, . . . ,−10. It can be noticed that if j = 0, the crack cuts through the middle of finite element edges
in the x2 direction, and as j decreases the crack moves up to the finite element edges in the x1 direction, with
δ → h/2 when j → −∞.

To perform these analyses, the mesh obtained with the first level of refinement, i.e., Ndiv = 17, is adopted.
The blue curve in Fig. 3 illustrates the SCN K(K) for each value of δ. It is observed that, when the crack is
very close to finite element edges, the SCN starts to increase. In the present work, a node snapping (NS) strategy
is adopted to control this behavior. Herein, the algorithm presented by Sanchez-Rivadeneira and Duarte [7], that
moves the nodes that are very close to the crack towards its line, is applied.

The nodes moved are the ones in which

δclosestα / hmax
α < δsnap,

with δclosestα the closest distance between the node and the crack, and hmax
α the biggest distance between the node

and its vertex neighbors. Herein, it is adopted δsnap = 5%. It is important to highlight that this node snapping
strategy is only applied at vertex nodes. The edge nodes are only moved in order to keep them in the middle of
their corresponding edges.

Applying this NS strategy, the conditioning is again controlled. This can be seen in the green plot of Fig. 3.

10−12 10−8 10−4 100

105

107

109

β = 2

h/2− δ

K
(K

)

Without NS

With NS

Figure 3. Robustness test for the numerical problem and Ndiv = 17.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



M.H.C. Bento, C.S. Ramos, S.P.B. Proença, C.A. Duarte

5 Conclusions

This work aims at developing a simple and accurate quadratic GFEM formulation based on the quadratic
Partitions of Unity (PoUs) usually adopted as shape functions within the standard FEM context. The approximation
proposed in this paper can be understood as an extension of the work of Sanchez-Rivadeneira and Duarte [5], since
the same enrichment functions are herein adopted, and it is closely related to strategy ES-B presented by Sanchez-
Rivadeneira and Duarte [7]. The GFEM formulation delivered, for the investigated numerical problem of Section
4.1, quadratic convergence in the energy norm and well-conditioned stiffness matrices, with a SCN growth rate
not greater than what is reached by the FEM. Herein, other situations regarding the relative position between the
crack and the finite element mesh are investigated to assess the robustness of the method. The robustness of the
proposed approach is also demonstrated by showing that the stiffness matrix conditioning is preserved even for
critical situations regarding the relative position between the mesh and the crack line.
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