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Abstract. We propose new hybrid finite element methods for elliptic problems based on a Least-Squares varia-
tional principle (LS-h). We devised the LS-h formulation considering local minimization problems in each element
of the mesh, with the objective function composed of Least-Squares residual terms in each element and local in-
terface conditions (i.e., transmission conditions on the mesh skeleton). The LS-h formulation can be rewritten in
terms of independent local problems and a coupled global problem. The former consists of Least-Squares formu-
lations and the latter is written in terms of a Lagrange multiplier – identified as the trace of the primal variable –
imposing the transmission condition on the mesh skeleton. Thus, we obtain the global system by static conden-
sation, reducing considerably the number of unknowns to be solved. For the resulting algebraic system, through
Singular Value Decomposition (SVD) numerical calculations, we estimate the condition number of the LS-h using
the l2-norm. We compare the LS-h with classical Hybridizable Discontinuous Galerkin (HDG), showing that LS-h
has similar condition number estimates in spite of the different block structure in its resulting system. Furthermore,
we performed numerical experiments using the method of manufactured solutions to show that LS-h has optimal
convergence rates – in terms of l2-norm – for both primal and flux variables.
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1 Introduction

In the context of Finite Element methods, the mixed formulation is a suitable approach to solve accurately for
two or more variables, frequently primal (scalar) and associated flux (vector-valued) variables, as explained in Boffi
et al. [1]. However, a higher computational cost is demanded to solve mixed problems when compared to classical
primal formulations, since the number of unknowns is increased. The scenario is even worse when discontinuous
approximations are used in the function spaces. Nonetheless, such approaches have desirable features: local mass
conservation, optimal convergence rates for both variables, and stability (see Arnold et al. [2] for details).

A particular approach to derive stabilized mixed formulations – satisfying the inf-sup condition – is based
on Least-Squares (LS) variational principles (for instance, see Bochev and Gunzburger [3]). Such formulations
provide a way to devise finite element methods with more flexibility concerning the choice of function spaces and
polynomial degrees in the discretization. The purely Least-Squares based formulations are well explored for a
wide range of applications using conforming approximations, as shown in Bochev and Gunzburger [4] and Bochev
and Gunzburger [3]. However, only a few pieces of work aiming at nonconforming LS are published. For instance,
Houston et al. [5] and De Sterck et al. [6] tackled hyperbolic problems, and Lin [7] worked on reaction-diffusion
problems. Recently, a weak Galerkin LS formulation for second-order elliptic problems was proposed in Mu et al.
[8], followed by a discontinuous LS method addressing the same problem (see Ye and Zhang [9]).

On the other hand, discontinuous Galerkin (DG) methods are in active development. One of the main subjects
is the hybrid methods, which solve a problem for unknowns in the elements’ interior and on their boundaries (for
some trace function), as defined in Oden and Reddy [10]. On the light of hybridization and static condensation,
Cockburn and Gopalakrishnan [11] characterized the solution of classical hybridized mixed formulations. Such
ideas paved the way for Cockburn et al. [12] to propose a unified framework to obtain hybridized formulations
of classical methods. The fundamental outcome of this work is the Hybridizable Discontinuous Galerkin (HDG)
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methods, a powerful framework to formulate hybrid methods. The main advantage of HDG is its capability to
perform static condensation, drastically reducing the number of unknowns while preserving the desirable features
aforementioned. Thus, the high computational cost associated to discontinuous approximations can be decreased,
providing a competitive alternative for DG methods.

In this context, the main goal of the present work is to introduce new LS formulations based on HDG ideas.
The new method is composed of Least-Squares local problems, with flux conservation being weakly imposed by
the transmission condition on the mesh skeleton through a Lagrange multiplier. A global system depending only on
the Lagrange multiplier is obtained by static condensation, reducing the number of degrees of freedom (unknowns)
of the problem. To the best of our knowledge, this is the first time such LS formulations are proposed. A similar
idea is presented in Mu et al. [8], but combining an LS formulation with Weak Galerkin method, which requires
additional vector-valued unknowns on mesh skeleton when compared with our approach.

2 Problem Statement

Throughout this work, we consider a scalar second-order elliptic problem with Dirichlet boundary condition.
The model problem is rewritten as an equivalent first-order system, as usual for classical mixed finite element
methods that obtain a solution for both primal and flux variables. Additionally, a curl equation is considered as did
in Bochev and Gunzburger [3, 4] and Cai et al. [13], which is a well known rearrangement of the elliptic system
due to its the irrotational characteristic.

The problem is stated as follows: Given an open and bounded domain Ω ⊂ Rn (n = 2 or 3) with a Lipschitz
boundary ∂Ω, find the pair {u, p} in Ω satisfying:

Au +∇p = 0, ∇ · u = f, ∇× (Au) = 0 in Ω; p = pD on ∂Ω, (1)

in which we call u and p as the flux and primal variable, respectively. Moreover, we have A ≡ K−1, assuming
that K is an n× n symmetric uniformly positive definite tensor of functions in L2(Ω), as considered in Cai et al.
[14], such that λξT ξ ≤ ξTKξ ≤ ΛξT ξ for all ξ ∈ Rn with 0 < λ ≤ 1 ≤ Λ, and λ,Λ ∈ R.

3 Weighted Least-Squares formulations

Combining the ideas presented in Bochev and Gunzburger [3, 4] for Finite Element methods based on Least-
Squares variational principle with the Hybridizable Discontinuous Galerkin (HDG) framework proposed in Cock-
burn et al. [12], we devise new hybridizable L2-Weighted Least-Squares formulations (LS-h, for short).

3.1 Preliminaries and Notation

Hereafter – for simplicity, although easily extensible to general cases – we adopt a polygonal domain Ω ⊂ R2.
Let Th = {K} := union of all elements K be a regular partition composed by non-overlapping K (triangles or
quadrilaterals). We denote E◦h and E∂h the sets of interior and boundary edges, respectively, defined on the skeleton
of the partition Th, which is represented as Eh.

For scalar functions use the standard L2(D) inner product as

(u, v)D =

∫
D

uvdx, 〈u, v〉S =

∫
S

uvds, (2)

for D ⊂ Rn and S ⊂ Rn−1, with appropriate extensions to vector or tensor functions. On broken function spaces
we define

(u, v)Th =
∑
K∈Th

∫
K

uvdx, 〈u, v〉Eh =
∑
e∈Eh

∫
e

uvds. (3)

The associated L2(ω)-norms are given as ‖v‖ω :=
√

(v, v)ω , where v ∈ L2(ω) with ω being D,S, Th or Eh.

3.2 Conforming Least Squares formulation

Before introducing the hybrid formulation, we recall the H1(Ω) conforming formulation based ont the fol-
lowing weighted least squares functional

LHC(v, q) :=
1

2

(
δ1(Av +∇q,v + K∇q)Ω + δ2 ‖∇ · v − f‖2Ω + δ3 ‖∇ × (Av)‖2Ω

)
(4)
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Diego T. Volpatto, Antônio T. A. Gomes, Abimael F. D. Loula

with (v, q) ∈ U(Ω)× V (Ω) where U = H1(Ω) × H1(Ω) and V = H1
0 (Ω). The least squares minimization

problem
(u, p) = arg minLHC(v, q), ∀(v, q) ∈ U(Ω)× V (Ω). (5)

is equivalent to solving the following weak problem: Find (u, p) ∈ U× V such that

B((u, p), (v, q)) = F (v), ∀(v, q) ∈ U× V, (6)

with

B((u, p), (v, q)) := δ1(Au +∇,v + K∇q)Ω + δ2(∇ · uh,∇ · v)Ω + δ3(∇× (Auh),∇× (Av))Ω (7)

F (v) := δ2(f,∇ · v)Ω (8)

Finite element approximations of this H1(Ω) conforming least squares formulation are analyzed in Cai et al. [13].

3.3 Hybrid Least Squares finite element formulation

To present the hybrid least squares finite element method, we introduce the following broken finite-dimensional
polynomial spaces on the partition Th

Uk
h = {vh ∈ [L2(Ω)]2;vh|K ∈ [Pkh(K)]2, ∀K ∈ Th}, (9)

Vkh = {qh ∈ L2(Ω); qh|K ∈ Pkh(K), ∀K ∈ Th}, (10)

where Pkh(K), k ≥ 1, is the space of polynomials of degree k. On the edges e ∈ Eh we introduce the polynomial
space

Mn
h = {µ ∈ L2(Eh) : µ|e = Pnh (e), ∀e ∈ Eh}, (11)

where Pnh (e) is the space of discontinuous polynomials of degree less or equal to n on each edge e.
Our hybrid finite element formulation is constructed based on least following square functional

Llsh(v, q, µ) :=
1

2

(
δ1(Av +∇q,v + K∇q)Th + δ2 ‖∇ · v − f‖2Th + δ3 ‖∇ × (Av)‖2Th

)
+
∑
K∈Th

(
δ4
2

∫
∂K

(q − q̂)2ds+

∫
∂K

µv̂ · nds
)
, (12)

with (v, q, q̂) ∈ Uk
h×Vkh×Mn

h , where q̂ is the trace of primal variable on the mesh skeleton, v̂ := v+τ (q − q̂)n,
which is frequently called as the flux numerical trace and, τ is an edge stabilizing parameter and n the outward
unit normal vector on ∂K. The δi parameters are weights whose values should be conveniently set. Through
the functional defined in eq. (12), it is clear that µ ∈ Mn

h is a Lagrange multiplier that weakly imposes the
numerical flux conservation locally, enforcing the normal component of numerical flux to be zero on inter-element
boundaries. We identify the trace of the primal variable as the Lagrange multiplier, i.e., q̂ = µ and p̂ = λ.

The minimization problem

(uh, ph, λh) = arg minLlsh(v, q, µ), ∀(v, q, µ) ∈ Uk
k × Vkh ×Mn

h. (13)

is equivalent to the following weak problem: Find (uh, p, λ) ∈ Uk
h × Vkh ×Mn

h such that

Blsh((uh, p, λ), (v, q, µ) = Flsh(v), ∀(v, q, µ) ∈ Uk
h × Vkh ×Mn

h, (14)

with

Blsh((uh, ph, λh), (v, q, µ)) :=
∑
K∈Th

[δ1(Auh +∇ph,v + K∇q)K + δ2(∇ · uh,∇ · v)K

+δ3(∇× (Auh),∇× (Av))K + δ4 〈ph − λh, q − µ〉∂K + 〈ûh · n, µ〉∂K ]

(15)

Flsh(v) :=
∑
K∈Th

δ2(f,∇ · v)K (16)

where ûh := uh + τ (ph − λh)n.
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To solve eq. (14) two further developments can be considered. One possible approach is evaluating the inner
product on δ1-terms and applying the Green’s identity, resulting:

δ1(Auh +∇ph,v + K∇q)K = δ1(Auh,v)K − δ1(q,∇ · uh)K − δ1(ph,∇ · v)K + δ1(K∇ph,∇q)K
+ δ1 〈q, ûh · n〉∂K + δ1 〈λh,v · n〉∂K

(17)

which leads to a non-symmetric formulation when substituting into eq. (15).
Another approach to solve the system presented in eq. (14) is based on the incorporation of terms that provide

a solution for the same strong local problem, avoiding the evaluation of the inner product in δ1-terms. This
technique is commonly employed to stabilize mixed finite element methods to circumvent the inf-sup condition,
providing more flexibility to choose approximation function spaces, as proposed in Correa and Loula [15] and
Masud and Hughes [16] for Darcy problems. In this way, we propose the inclusion of a Galerkin-type term related
to the equation Au +∇p = 0 (flux residual), obtaining the following problem:

Find (uh, p, λ) ∈ Uk
h × Vkh ×Mn

h , such that

Blsh((uh, p, λ), (v, q, µ) + S(uh, ph, λh;v) = F (v) + δ1 〈PMh
(pD),v · n〉∂K∩∂Ω ,

∀V ∈ Uk
h × Vkh ×Mn

h and ∀v ∈ Uk
h,

(18)

where

S(uh, ph, λh;v) := δ1(Auh,v)K − δ1(ph,∇ · v)K + δ1 〈λh,v · n〉∂K (19)

and PMh
(pD) is the projection of pD intoMn

h .

Remark 1. In the above formulation, the parameter δ1 is not a L2-weight, but a generic stabilizing parameter. It
is worth mentioning the close relation with the Stabilized Dual Hybrid Mixed (SDHM) proposed by Núñez et al.
[17], which we can retrieve by adding a Galerkin-type term related to flux residual and choosing its stabilizing
parameter value as one.

Remark 2. The stabilization with the Galerkin-type in eq. (18) is necessary for the associated discrete linear system
solvability. Some clarifications in this regard are provided in the next section.

4 Algebraic System and Condition Number estimation

The formulations proposed in the previous section introduced local problems and a general variational for-
mulation involving three unknown fields. Due to the hybridization, a global problem can be written only in terms
of the Lagrange multiplier after manipulating the resulting systems with static condensation, as demonstrated in
Cockburn and Gopalakrishnan [11]. This section’s goal is to analyze the resulting algebraic system structure and
its spectral condition number estimation to shed light in solvability aspects.

4.1 Algebraic System

We consider a general linear system structure of the form:

Mx = f , (20)

where M is the discretization resulting matrix (LHS), x is the vector of unknowns (degrees of freedom), and f
is the “load” vector (RHS). For the Hybrid Mixed system, as described in Gibson et al. [18], the following block
structure is obtained:

M =


M00 M01 M02

M10 M11 M12

M20 M21 M22

 ; x =


u

p

λ

 ; f =


fu

fp

fλ

 , (21)

where u, p and λ are the unknowns’ vectors related to uh, ph, and λh, respectively. The load vector is partitioned
analogously, and Mij denotes block-matrices related to each unknown.
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Through Schur complement computations, u and p can be eliminated and an equation depending only on the
Lagrange multiplier is obtained:

Sλ = fc (22)

in which S is the global condensed system and fc is the condensed load vector. It is worth noting that S can
be assembled element-wisely, since it requires block contributions associated to local problems only. For hybrid
methods, only the global system in eq. (22) has to be solved, and the solution for flux and primal variables can be
easily recovered using the solution for λ. We refer to Gibson et al. [18] for further details.

Remark 3. The condensed system in eq. (22) is symmetric for classical HDG formulations, as demonstrated by
Cockburn et al. [12]. However, for the proposed LS-h formulations, the condensed system is not symmetric.
This feature poses an open challenge for such formulations. Nonetheless, the global system is still structurally
symmetric and sparse.

Remark 4. The general block-partitioned structure in eq. (21) shows the requirements to build a solvable global
system properly coupled to the degrees of freedom (DoFs) internal to the elements. At least one of the block
matrices related to the Lagrange multiplier (M02 or M12) should be a nonzero block. The equivalent counterpart
(M20 or M21) in the λ equation should also be nonzero in order to couple the variables. Moreover, the block
matrices related to the internal DoFs (M01 or M10) should be nonzero matrices.

4.2 Condition Number estimation

The conditioning of a linear system can indicate if the problem is unstable (or ill-posed). Although a poor
conditioning (large condition number) is not a sufficient condition, as stated in Saad [19], it is well known that
FEM discretizations with smaller condition numbers may require less iterations when using iterative methods to
solve the resulting linear system. For instance, see Mardal and Winther [20] for mixed formulations on the light of
inf-sup condition and Kirby [21] for a Lax-Milgram lemma perspective.

In this work, we estimate the “spectral” condition number of the condensed systems S, which is defined as

κ2(S) = ‖S‖2
∥∥S−1

∥∥
2

=
σmax(S)

σmin(S)
, (23)

in which ‖•‖2 is a consistent matrix l2-norm (euclidean norm), σmax(S) is the largest singular value of S, and
σmin(S) is the smallest singular value. To estimate the singular values, we used the Locally Optimal Block Pre-
conditioned Conjugate Gradient Method (LOBPCG) proposed in Knyazev [22].

5 Results

In the following, we provide the computed convergence rates using the method of manufactured solutions
(MMS). Furthermore, the “spectral” condition number is numerically estimated using the LOBPCG freely avali-
able in Python’s SciPy library (Virtanen et al. [23]). We implemented the formulations using Firedrake, an auto-
mated system to solve partial differential equations using FEM, described in Rathgeber et al. [24]. The resulting
linear system solution is obtained through the LU direct sparse solver provided in MUMPS (see Amestoy et al.
[25]). Throughout this section, we denote as LS-h the formulation presented in eq. (14) with the inner product
expansion from eq. (17), and as LS-h-s the one presented in eq. (18).

Regarding the setup of the numerical experiments, for both convergence rates and condition numbers, we
consider a uniform 2D unit square mesh, i.e., Ω = [0, 1] × [0, 1] partitioned in triangles. The mesh characteristic
size h is the element’s circumscribed diameter. The polynomial degrees for all variables are chosen with equal
order. We set δi = h2 for both methods, except for LS-h-s, which has δ1 = 1. To demonstrate the potential of the
new formulations, we compare them with HDG results.

5.1 Convergence rates

To numerically estimate convergence rates, we employ the MMS. The exact solution is given as:

p(x, y) = sin (2πx) sin (2πy) (24)
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(a) k = 1. (b) k = 2. (c) k = 3.

Figure 1. Convergence rates in L2-norm for LS-h formulations for different polynomial degrees k.

The convergence rates – for scalar and flux variables – are computed for 1 ≤ k ≤ 3. Fig. 1 shows the results.
With the exception for LS-h-s when k = 1, all convergence rates are optimal for both variables.

5.2 Condition number

The condition number is estimated on the condensed matrix S presented in eq. (22). Fig. 2a shows how
condition number varies according to different characteristic mesh sizes while holding the polynomial degrees
fixed (k = 1). Fig. 2b depicts how the condition number changes due to increases in the polynomial degrees when
the mesh is fixed. For both LS-h and LS-h-s, the results are slightly better than those obtained with HDG.

(a) Varying mesh size. (b) Varying polynomial degrees.

Figure 2. Condition number results (in log scale) varying (a) the mesh size with a fixed polynomial degree (k = 1),
and (b) the polynomial degrees for a given mesh with 14× 14 triangles.

6 Conclusions

In this work, we proposed new finite element formulations based on Least-Squares variational principles,
namely, LS-h and LS-h-s. The results show that both formulations are competitive with a classical HDG method
when comparing convergence rates and condition numbers. However, the study of such formulations is still in
progress, demanding further analysis (to be addressed in future work).
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