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Abstract. In phase-field modelling of fracture, the cracking representation is conditioned by the relation between
the displacement field and a phase-field variable that measures the degradation of the material. In this sense, the
cracks are modelled as smooth and diffuse according to a group of functions that best represents the geometry of the
region where the phenomenon takes place and how the strain energy is degraded during crack propagation. Using
a variational formulation of Griffith’s criterion, these functions are combined in such a way to attend to the balance
laws and the crack irreversibility condition, as well as the bounds of the phase-field variable. The Department of
Structural Engineering of the Federal University of Minas Gerais (UFMG) has been currently incorporating, in its
open-source software INSANE (Interactive Structural Analysis Environment system), various phase-field models.
Nonetheless, the software still has some limitations as the use of some functions may extrapolate the phase-field
bounds during solving. The literature has described the use of a bound-constrained solver that can overcome this
issue. Therefore, this work proposes the implementation of this solution strategy without the use of any external
libraries.
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1 Introduction

In structural engineering, the prediction and description of crack paths and structural behaviour during frac-
ture have always been a challenge. In this regard, several computational methods have been developed to achieve
precision and performance. Particularly in Finite Element Methods, one can invoke models that try to reach this
objective by the use of adaptive discontinuous meshes, that cast the crack directly in the arrangement of the ele-
ments, and others, by using continuous meshes, with degradation conditions for representing the fracture. For the
latter, various physical phenomena or engineering solutions have been incorporated in the literature, as smeared
cracking models and damage models. The phase-field modelling of fracture (PFM) is another approach that has
gained prominence within the last years.

The PFM approach for the modelling of quasi-static fracture processes has its foundation in Griffith’s theory,
but with changes regarding the sharpness of the crack. In this sense, opposing to the base theory, the model
describes the crack as a smooth region with the degradation magnitude evaluated by a phase-field variable, ϕ. This
change is essential to overcome numerical discontinuities that might lead to solution errors.

For solving the PFM different approaches can be invoked from the literature, normally based on monolithic or
alternating convergence schemes. In either cases, the main concern of the solving techniques, besides convergence
issues, is the imposition of the bound and irreversibility conditions on the phase-field variable. A well-known
strategy was developed by Miehe et al. [1], which proposed the use of a historical variable to secure a monotonic
evolution of the effective strain energy. This scheme achieves great robustness but is conditioned to the use of a
restricted group of functions to ensure the irreversibility condition. In this sense, this restriction leads to problems
in relating the model variables with physical quantities as tension stress strength. Farrel and Maurini [2] introduced
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another strategy by using a reduced-spaced active set Newton-type solver developed by Benson and Munson [3].
This algorithm allows the use of a wider variety of functions, that along with other definitions, enable a better
understanding of the relation between the model and physical properties.

Hence, this works aims to make a new implementation in the INSANE system of the latter mentioned algo-
rithm to allow the study of more recent functions for PFM. Besides the existence of external libraries with great
performance, a home-made implementation would grant a better understanding of the steps taken during solving
and allow future personalisation of the algorithm for research purposes.

2 Foundation of the Phase-field theory

In general, Griffith’s theory problem can be described as a body domain Ω, with an external boundary ∂Ω, a
component relative to loading ∂Ωt, prescribed displacements ∂Ωu and a sharp crack Γ, Fig. 1(a). In Phase-field
formulation the sharp crack Γ is replaced by a diffuse domain B, as illustrated in Fig. 1(b).

(a) (b)

Figure 1. Problem visual description with (a) sharp crack; (b) diffuse crack;

Griffith’s criterion estimate a fracture critical energy by relating the crack surface growth energy (Ψc), the
strain energy release energy (Ψs) and the energy provided by external forces (Pext), eq. (1).

Et(ū) = Ψc +Ψs − Pext (1)

In order to take into account the diffuse crack region and the phase-field variable, the equations Ψc and Ψs

can be approximated accordingly to eq. (2) and eq. (3), respectively.

Ψc =

∫
Γ

GfdA ≈
∫
B
Gfγ(ϕ,▽ϕ)dV (2)

Ψs =

∫
Ω

ψ0(ϵ)dV ≈
∫
Ω

ψ(ϵ, ϕ)dV (3)

where Gf is the critical energy release rate, a material property, and γ(ϕ,▽ϕ) the crack surface density
function, which will be explained in Section 2.1.

2.1 Smooth crack representation

As previously explained, the ϕ variable describes the state of degradation of a domain point, therefore it can
vary from 0, representing an intact material, to 1, which represents a fully degraded material. Hence, within this
approach, Wu [4] described a formulation for γ accordingly to eq. (4):

γ(ϕ,▽ϕ) = 1

C0

[
1

l0
α(ϕ) + l0 |▽ϕ|

]
(4)
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where l0 represents the crack characteristic length, see fig. 2, α the Geometric Crack Function (GCF) and
C0 =

∫ 1

0
α

1
2 (ϕ)dϕ a constant relative to the α function chosen. The GCF values must be defined in the range

α(ϕ) ∈ [0, 1] and satisfy the properties α(0) = 0 and α(1) = 1.
One can find several α functions in the literature. For quasi-static fracture problems, the most used functions

are the one introduced in Bourdin et al. [5], α(ϕ) = ϕ2, and the linear approach, α(ϕ) = ϕ from Pham et al. [6],
beside of those, Wu [4] suggests the use of α(ϕ) = 2ϕ− ϕ2 and introduces a general formulation:

α(ϕ) = ξϕ+ (1− ξ)ϕ2 with: ξ ∈ [0, 2] (5)

The bounds of ξ are essential so the function becomes monotonically crescent. To visualize it better, one may
refer to fig. 2 which plots the functions in a unidimensional domain.

−2 −π
2

−1 0 1 π

2
2

x

ϕ(x)1

l0 l0

α(ϕ) = ϕ

α(ϕ) = ϕ2

α(ϕ) = 2ϕ− ϕ2

sharp crack

Figure 2. Various GCFs with l0 = 1 and crack in x = 0 in a unidimensional domain

2.2 Strain energy degradation

Equation 3 pointed out the necessity to redefine the strain energy density ψ0 as a function of ϕ, for that
purpose, an Energetic Degradation Function (g) is usually defined, which represent mathematically how the degra-
dation affects the region strain energy. The function g is usually implemented as in eq. (6):

ψ(ϵ, ϕ) = g(ϕ)ψ0(ϵ) (6)

There are many energetic degradation functions (EDFs) used in the literature. They must verify, according
to Wu et al. [7], the values g(0) = 1 and g(1) = 0 at the boundaries, which represent respectively an intact and a
fully degraded energetic conditions. Besides, it is important that g′(ϕ) < 0 for ϕ ∈ (0, 1), therefore the equation
will be a monotonically decreasing function and that g′(1) = 0, to avoid abrupt changes in the function boundary.
The EDF which will be used in this work was presented in Wu [4] and can be expressed as:

g(ϕ) =
(1− ϕ)p

(1− ϕ)p +Q(ϕ)
Q(ϕ) = a1ϕ+ a1a2ϕ

2 + a1a2a3ϕ
3 (7)

The parameters a1, a2, a3 and p in can be related with material properties, e.g. in a one dimensional problem:

a1 =
2E0Gf

ft
2 · ξ

C0l0
(8)

a2 =
1

ξ

[(
−4πξ2Gf

C0ft
k0

) 2
3

+ 1

]
− (p+ 1) (9)
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a3 =


0 p > 2

1

a2

[
1

ξ

(
C0wcft
2πGf

)2

− (1 + a2)

]
p = 2

(10)

where ξ is the value of Wu [4] α function, eq. (5), ft is the material tension strength, k0 is the function slope
at the start of the degradation process and wc the maximum crack opening displacement reached with residual
stress. Both k0 and wc correspond to the respective values obtained in a standard tension test simulation and can
be related to the aimed softening law desired for the analysis.

3 Bound-Constrained Solver

The herein explained bound-constrained solver is a strategy introduced in Farrel and Maurini [2] to overcome
the phase-field variational challenge in dealing with the bound, ϕ ∈ [0, 1] and irreversibility of the phase-field
variable, ϕ̇ > 0. The author describes the variational as a mixed complementary problem (MCP), a formulation
based in mathematical programming optimisation, and defines the following optimisation conditions for the nodal
phase-field variable aI : 

aI,n < aI,n+1 < 1 rϕI = 0

aI,n+1 = aI,n rϕI ≤ 0

aI,n+1 = 1 rϕI ≥ 0

(11)

where I = 1, 2, 3... represents each node in the analysis, aI is described by the relation ϕI = [N]
ϕ
I aI , in

which [N]
ϕ
I is the shape function for the phase-field variable and the node I and rϕI is the residual of the phase-field

variational in finite element method formulation, for further details see Wu et al. [7].
To solve the MCP, Farrel and Maurini [2] suggest the use of the reduced space active-set method from Benson

and Munson [3]. It can be done by separating the nodes in active groups, that reached the expected optimisation,
and inactive ones, in which will perform a Newton-Raphson type iteration. Furthermore, it is recommended to use
a backtracking line search method at the end of each iteration, to improve performance aspects.

The active-set is defined by the group of nodes with aI,n+1 = aI,n and rϕI < 0 or aI,n+1 = 1 and rϕI < 0.
The remaining are labelled as inactive, and iterated over. The solution algorithm is illustrated in fig. 3:

Data: (ān, ā0n+1)
Result: (ākn+1)
while

∥∥F̄Θ(ā
k
n+1)

∥∥ > tolerance do
Define sets: active (A) and inactive (I);

Calculates
[
Nϕϕ

]k
and

[
Nϕϕ

]k
I by the indices of the sets;

Calculate the search-direction p̄k+1
I =

[
Nϕϕ

]−1,k

I · r̄ϕ,kI and sets p̄k+1
A = 0̄;

Find biggest µ = λl < 0 that solves
∥∥FΘ(π

[
ān+1 + λlp̄k+1

]
)
∥∥ ≤ (1− τλl)

∥∥FΘ(ā
k
n+1)

∥∥;
If the line search fails, choose µ = λl that leads to the steepest descent;
Define āk+1

n+1 = π
[
ākn + µp̄k+1

]
;

k = k+1;
end

Figure 3. Bound-constrained solver for the n-th step

where π[X] is a projector operator and FΘ(X) is a restriction operator respectively defined as:

π[ā]l =


1,

0,

aI

if aI ≥ 1

if aI ≤ 0

if 0 ≤ aI ≤ 1

FΘ(ān+1)I =


rϕI ,

min(rϕI , 0),

max(rϕI , 0),

for aI,n < aI,n+1 < 1

for aI,n+1 = 1

for aI,n+1 = aI,n

(12)
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4 Numerical Examples

4.1 Shear test

The shear test is a common example in the phase-field literature. The test is illustrated in fig. 4(a), where
S is a predefined crack. Two meshes will be considered for the test, a quadrilateral transfinite with element size
of h = 0.001 mm and another unstructured mesh with a nodal distance ranging from 0.1 to 0.002 millimetres.
The objective is to compare the results of the new implemented solver with the results using historical variable
reported in Leão [8] work. Thus, the problem is defined with the following material properties: Young modulus
E0 = 210000 N/mm2, Poisson’s constant ν = 0.2, fracture energy Gf = 2.7 N/mm and l0 = 0.02 mm. Besides, the
equations α = ϕ2 and g = (1 − ϕ)2 by Bourdin et al. [5] were used, together with Miehe et al. [1] constitutive
model.

(a) (b) (c)

Figure 4. Shear test: (a) problem model (in millimeters), (b) Q4 structured mesh, (c) T3 unstructured mesh

For the processing parameters, a displacement control strategy was used, where the top-right node performed
steps of 1 · 10−4 mm. For the tolerance, 1 · 10−4 was set for displacement and phase-field individual control and
1 · 10−3 for global control.
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(b)

Figure 5. Displacement of control node (a) in Q4 mesh; (b) in T3 mesh;

The results showed that the new implementation achieves similar results for both meshes. Even though for
the triangular unstructured mesh the degradation process didn’t perform as smoothly as with the historical variable
solver, it still predicted alike shape and maximum load.
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4.2 L-shaped panel

The L-shaped panel is a benchmarking test provided with experimental results in the work of Winkler et al.
[9]. The example will be performed to compare the PFM results with smeared cracking models results presented
in Penna [10]. The analysis is performed in resemblance to the experimental arrangement, illustrated in fig. 6(a),
therefore the ground nodes are fixed in both x and y directions. To follow the same model conditions as used by
Penna [10], a uniform distributed vertical load was applied at all nodes on the left side of the structure.

As it can be seen, the mesh used in the smeared crack model from Penna [10], fig. 6(b) is far less refined than
the one used in the here presented phase-field analysis, fig. 6(c). That is due to model conditions, wherein smeared
cracking models, a refinement might lead to numerical errors, and in PFM, it is needed to best represent the GCF.
Therefore, a mesh with h = 50 mm and with a refinement of h = 1 mm in the crack region was used.

For this analysis, the constitutive model and functions of Wu [4] was used. Furthermore, GCF with ξ = 2 and
two different values for the EDF were set: using Cornelissen’s softening law for concrete, thus a2 = 1.3868 and
a3 = 0.6567, and an Exponential Softening law, with a2 = 0.1748, a3 = 0 and p = 2.5, for details about the chosen
values refer to Wu [4]. The simulation was performed with the same material properties as in Penna [10]: E0 =
25850.0 N/mm2, ft = 2.7 N/mm2, fc = 31.0 N/mm2,Gf = 0.065 N/mm2 and ν = 0.18. The material was calibrated
by the result of a load-displacement traction analysis of a single square element with 1 mm side, fig. 7(a), which
led to the use of l0 = 8.5 mm. An additional simulation was performed with the parameters from Unger et al. [11]
that uses Young’s modulus E0=20000.0 N/mm2 and fracture energy Gf = 0.065 N/mm2, which are different from
the original values of the experiment from Winkler et al. [9] but gives a result curve closer to the experimental data.

(a) (b) (c)

Figure 6. L-panel test: (a) problem model; (b) Smeared crack mesh; (c) PFM mesh;

For the processing parameters, a displacement control strategy was used, where the top left node performed
steps of 0.002 mm in y direction. For the tolerance, 1·10−5 was set for displacements and phase-field individual
control and 1·10−4 was set for global control. The results can be seen in the fig. 7(b).
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Figure 7. L-shaped Panel: (a) calibration results; (b) control node displacement within various input parameters;

Figure 7(b) showed that, even though having similar material behaviour, the PFM models performed very
unlike the smeared cracking models and the experimental results. It predicted a similar shape for the results but
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failed to achieve the maximum load in the experimental range and overestimated the degradation throughout the
analysis.

5 Conclusions

The presented data shows that the newly implemented solver can successfully use various formulations of
PFM and solve the model respecting the phase-field variable bounds. Although the results in the shear test with
triangular unstructured mesh had a descendent region not as smooth as in the historical variable based solver, it
could still achieve great similarity in the results.

In the L-Panel experiment, it was possible to notice that the bound-constrained solver was able to handle
the newly implemented functions without convergence problems or non-expected results. The shape of the results
were in agreement with the experimental data, even though they did not achieve values as good as in the smeared
cracking models. Future works may bring up new functions or better ways to calibrate the model to achieve more
precise results.
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