7
PANACM

RIO DE JANEIRO 2021

Parallel Solution of 3D Ohta-Kawasaki Nonlocal Phase Field Model in
FEniCS

Gabriel F. Barros!, Adriano M. A. Cortes2, Alvaro L. G. A. Coutinho!

L Civil Engineering, COPPE/Federal University of Rio de Janeiro
Rio de Janeiro, RJ 21941-598, Brazil

gabriel.barros @nacad.ufrj.br, alvaro @nacad.ufrj.br
2NUMPEX-COMP, Federal University of Rio de Janeiro

Dugque de Caxias, RJ 25240-005, Brazil

adriano @nacad.ufrj.br

Abstract. This study presents new results for the parallel solution of the 3D nonlocal Cahn-Hilliard equation
derived from the Ohta-Kawasaki free energy functional with adaptive time step control. The temporal adaptivity
scheme is recast under the linear feedback control theory equipped with an error estimation that extrapolates the
solution obtained from an energy-stable, fully implicit time marching scheme. We use three time-step controllers
with different properties: a simple Integral controller, a complete Proportional-Integral-Derivative controller, and
the PC11 predictive controller. We explore how different controllers affect the convergence of the nonlinear solver
for two values of the nonlocal parameter. The efficiency of the adaptive schemes for the nonlocal Cahn-Hilliard
equation is evaluated in terms of the number of time steps required for the complete simulation and the com-
putational effort measured by the required number of nonlinear and linear solver iterations. We show numerical
evidence of mass conservation and free energy decay for both nonlocal parameters.

Keywords: Nonlocal Cahn-Hilliard equation, Time step size adaptivity, Ohta-Kawasaki Functional, Feedback
Control Theory

1 Introduction

The numerical simulation of the Cahn-Hilliard (CH) equation is important in many different scientific and
engineering fields. It was first derived in 1958 to model the phase separation in binary alloys [, 2] and, since then,
the CH equation appears in several different physical contexts [3]] such as diblock copolymers, image inpainting,
binary fluid flow, fracture propagation, and topology optimization. For the specific case of the diblock copolymers,
a nonlocal version of the CH equation is often considered since the nature of this physics relies on long-range
interactions compared to the usual short-range interactions modeled by the standard CH equation.

This study is an extension of [4], in which the use of temporal adaptivity schemes within the linear feed-
back control theory was evaluated on both CH and Nonlocal Cahn-Hilliard (NCH) equations. Here, we focus
on the NCH equation, where an additional term is added to the CH equation responsible for modeling the long-
range interactions between phases. We consider the finite element method for spatial discretization and an energy
unconditional stable method for temporal discretization. We also evaluate three different time step size adaptiv-
ity schemes within the linear feedback control strategy to improve the efficiency of our simulations. In [4], we
compared two 3D NCH simulations with the same nonlocal term and different monomer proportions, while in
the present study, we preserve the ratio between phases while comparing the effects of using different nonlocal
parameters.

2 Governing Equations

We consider the following nonlocal extension of the standard CH equation, that is, the NCH equation,
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where o represents the nonlocal parameter, responsible for modeling the magnitude of the long-range microforces
between the phases. The parameter ¢ is the mean value of ¢ in the domain 2 € R™s¢ with boundary 0f) and
nsq = 2, 3. The NCH equation is derived from the O—K functional, that can be written [3. 6] as,
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where v is related to ¢ via the boundary value problem —Av = (¢ — ).

The O-K free energy functional is derived from the mean field theory in the context of diblock copolymers
[7]. In the case where 0 = 0, the O-K functional becomes the Ginzburg-Landau free energy functional [8]].
Consequently, in this case, the NCH equation (E]) becomes the CH equation. Both CH [9], and NCH [10] equations
minimize the interfaces between phases, solving the isoperimetric problem. The difference, however, lies in the
fact that the Ginzburg-Landau free energy functional is minimized through the separation of phases due to short-
range microforces while the O-K free energy functional models pattern morphologies via energy minimization
involving the competition of both short and long-range microforces, where the latter is modeled by the magnitude
of the nonlocal parameter o. The competition between local and nonlocal microforces in the O-K free energy
functional leads to many different pattern formations in the equilibrium configuration of a copolymer melt, such
as lamellae, spheres, gyroids, and cylinders [6]. It is possible to map a given copolymer structure to a set of NCH
parameters, such as €, ¢, and o by a phase diagram [[5,/6 [11]] and the structure of the generated polymer is of utmost
importance on several applications in science and engineering such as nanotechnology and materials science [6].

3 Numerical Methodology

In this study, we evaluate the performance and accuracy of three different time step adaptivity schemes on the
numerical solution of the NCH. The finite element method is employed to discretize in space the NCH equation.
Since the NCH is a fourth-order PDE, standard C°-continuous finite elements are not suitable. Nonetheless,
there are other approaches, such as isogeometric analysis [12], discontinuous Galerkin [13]], and C'-continuous
elements [14]. However, we consider the splitting approach [15]], where the fourth-order PDE can be solved as
a nonlinear system of two second-order PDEs, thus enabling the use of C°-continuous finite elements at the cost
of an extra degree of freedom per node. As for the temporal integration, we consider an implicit, second-order,
unconditionally energy-stable method originally proposed for the CH equation and other traditional phase-field
equations [[16]]. This method enables the use of larger time steps obtained by time adaptivity without affecting the
numerical stability of the simulations. As for the temporal adaptivity schemes, the error is estimated a posteriori
by extrapolation by a lower-order time integration method in comparison with the temporal integration method
[L6]. Since the integration method of our choice is second-order, the extrapolation is done by the backward-Euler
method, a first-order approach. This error estimation strategy is efficient since it avoids the necessity of computing
the solution at the same instant for multiple time integration methods of different orders (i.e., see [9, 12, [17]).
With the error estimated, we consider three different controllers (Integral, Predictive, and Proportional-Integral-
Derivative) responsible for generating time step sizes able to keep the errors within a given tolerance. If the error
is larger than a given threshold, the time step size is recomputed, and the solution for that instant is rejected.
We evaluate the results in terms of mass conservation and free energy decay. All the numerical solutions are
computed using the FEniCS framework version 2019.1.0 [18]], a high-performance finite element library written
in Python/C++, using 24 cores. For further detailed information regarding the implementation and numerical
aspects of the simulations, we encourage the readers to read our previous work [4].

4 Numerical Experiments

In this section, we present the results of our numerical experiments. Our simulations consist of the resolution
of the NCH on a cubic domain with 1293 nodes, 1282 equally spaced cells, each cell subdivided into 6 tetrahedral
finite elements. We show the results for ¢ = 500 and ¢ = 750. Other physical parameters such as the interface
parameter ¢ = 0.1 and ¢ = 0.0 are kept identical for both simulations and the simulations start with an initial time
step size of Aty = 1x107Y. Initially, we discuss the time step size histories shown in Figure We can analyze this
figure by splitting the simulation time into three stages: an initial stage with a fast time step-growth, an intermediate
stage, where the time step increases but oscillates, and the final stage where the time step recovers a fast growth.
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Figure 1. Time step size history for the three controllers. Left, o = 500; right, o = 750.

For the initial stage, we observe that the simulation starts with a time step size around 10710, This means that the
solutions obtained using the initial time step size prescribed as At are too large to be kept within the prescribed
tolerances. The controllers are responsible for adjusting the time step sizes to fit this criterion. We also observe an
increase in the time step size in terms of orders of magnitude, meaning that after the initial time steps, the time step
size is too small for the physics. As for the intermediate stage, we observe some oscillations on the time step size
related to the physical aspects of the copolymer. The dynamics become more rapid when bubbles shrink, requiring
the time step size to diminish, and, after the occurrence of this phenomenon, the dynamics become slower, allowing
the time step size to increase. This occurs multiple times for each bubble under the effect of Ostwald’s ripening
phenomena, leading to the time step size oscillation observed in the intermediate stage. This leads to the final stage,
where time step sizes are large enough to track the interface motion. Comparing the graphs in Figure[I] we note
some differences. For 0 = 500, we observe some minor differences among the curves for the three controllers,
while for ¢ = 750, the curves are practically overlapping. This indicates that, despite leading to the formation
of identical melts, the use of different time step size controllers for the numerical solution of the NCH equation
may lead to different temporal trajectories until reaching the steady-state. This affects the dynamical evolution in
the sense that the same physical phenomena are observed in different simulation times [4]. However, being the
copolymer melt the most important information in NCH simulations, the difference between the time step curves is
negligible. For the case where o = 750, the three curves reveal similar behavior as observed on the simulations for
the CH equation on [4]. The copolymer melts can be seen in Figs. P]and [3]for ¢ = 500 and o = 750 respectively.
The figures show the evolution of copolymer melts at the different transient stages and the steady-state, showing
that the chosen parameters lead to stable melts.

Table |1{ shows the performance data for the simulated cases. We notice that the I controller presents a larger
number of rejected steps, while the PID has a larger number of total time steps (accepted and rejected), while the
PC11 yielded the smallest number of total time steps. Despite being a good metric for efficiency, the time step
controller has a significant influence on the solver requiring thus evaluating the total number of linear and nonlinear
iterations. For the I controller and o = 750, the average number of linear iterations is larger than the other cases.
We observe that the PC11 controller yields better performance when o = 500 and the PID controller is the most
efficient controller for the case where o = 750. In terms of accuracy, we observe the free energy decay and mass
conservation properties in Fig. 4] for the best performing controllers for each case. Mass conservation is within the
accuracy obtained at each time step solve, and the free energy decreases monotonically for both cases.

5 Conclusions

In this study, we present new results for the solution of the NCH using different controllers for the temporal
adaptivity scheme. This paper is an extension of our previous work where we studied the efficiency of the use
of time step size controllers on diblock copolymer simulations [4]. This study compares the results for two 3D
copolymer melts with different nonlocal parameters . We observe that the time step size curve for the three
proposed controllers is affected by o in the sense that, for ¢ = 500, the curves for the three controllers are
different, while for ¢ = 750, the three curves are practically identical. In both cases, the copolymer structure
is different due to the difference between the nonlocal parameter, although the melts obtained are identical for
the three controllers. We also evaluate the physical quantities of interest, such as mass and free energy of the
system, and confirmed mass conservation and free energy decay as expected. Finally, we evaluated the results in
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Figure 2. Evolution in time and final structure of a monomer on the generated diblock copolymer melts from the
3D simulations for o = 500.
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Figure 3. Evolution in time and final structure of a monomer on the generated diblock copolymer melts from the
3D simulations for o = 750.
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Figure 4. Free energy and mass conservation for the 3D simulations for the best performing controllers. Top
o = 500; bottom, o = 750.

Table 1. Results for the time adaptivity schemes for each time step controller in the 3D diblock copolymer simu-

lations.
o | Time Step | Accepted | Rejected | Avg. Nonlinear | Avg. Linear | Relative CPU

Controller Steps Steps Iterations Iterations Effort

I 4339 313 7.5168 722.6998 1.00

500 PID 5017 157 7.1780 607.4357 0.95

PCl11 4481 47 6.8601 593.4483 0.79

I 4203 286 7.9892 1037.7831 1.00

750 PID 4789 157 6.8434 502.5649 0.55

PC11 4354 37 6.8202 613.4493 0.57
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terms of efficiency by crossing the information obtained by the adaptivity schemes (such as the number of time
steps computed) with the solver information (linear and nonlinear iterations). The PC11 controller and the PID
controller yielded better results for the cases where ¢ = 500 and o = 750, respectively. The use of the most
efficient controllers in each case revealed the efficiency of 21% and 45%, respectively.
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