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Abstract. The modeling and simulation of gas bubble dynamics is still an active research area, mainly when
surface tension is present. One way to model the gas and fluid phases is with interface capturing methods. Three
well-established interface capturing models are the Volume-of-Fluid (VOF), level-set, and phase-field models. The
main advantage of the VOF method is mass conservation, while the implementation of the surface tension may
be challenging. The level-set is known for its ability to compute the surface tension accurately, and phase-field
models are known for satisfying the second law of thermodynamics. This work uses a conservative Allen-Cahn
equation to model and simulates the effects of the surface tension in gas bubble dynamics. We include concepts of
the level-set and VOF methods and verify the energetic stability of the methodology. We also compare the results
with the convected level-set method. Results are analyzed and discussed.
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1 Introduction

The modeling and simulation of two-phase flows is still an area of active research. Among the several
engineering problems involving two-phase flows, the study of bubbles’ motion is of fundamental importance in
many physical, chemical, and biological processes. Several experimental studies on the bubbles’ motion in liquids
have been conducted. Although experiments provide reliable results, they are difficult to reproduce, and measuring
all quantities of interest can be challenging. Thus, numerical simulation has become an alternative approach for
such complicated studies.

In numerical simulations, one of the main issues is to model the motion and deformation of the interface
between the two phases. Several methods are used for this purpose, and different approaches have been used to
model bubble problems. Three important methods used in this kind of study are the Volume of Fluid (VOF) method
[1], the Phase-Field method [2] and the Level-Set method [3].

In this work, we use a conservative Allen-Cahn equation based on [4] to model and simulate the effects of
the surface tension in gas bubble dynamics. This method is coupled with the Navier-Stokes equations, which are
discretized by the residual-based variational multiscale finite element formulation. Moreover, we consider adaptive
mesh refinement based on the flux jump of the phase-field variable errors in our simulations. All implementations
in this work uses the libMesh library. libMesh is an open-source library that provides a platform for parallel,
adaptive, multiphysics finite element simulations [5]. The main advantage of libMesh is the possibility to focus
on the implementation of the modeling-specific features without worrying about issues such as adaptivity and code
parallelization. Consequently, it tends to minimize the effort to build a high-performance computing code.

This study aims to predict the behavior of two-phase flows correctly and thus, represent bubbles rising in
viscous liquids. The remainder of this paper is organized as follows. Section 2 presents the conservative Allen-
Cahn model. Section 3 discusses the governing equations for two-phase incompressible fluid flow. Numerical
results for the two-dimensional rising bubble problem are shown in Section 4. The paper ends with a summary of
our main findings.
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2 Phase-Field model

The phase-field method is used to model the interface between two phases, which considers a diffuse repre-
sentation of the interface geometry and describes the minimization of the free energy functional [6]. The diffuse
interface between the two phases is described as a region where the phases are mixed and store the free energy.
Concerning the computational efficiency and stability, we employ the Allen-Cahn phase-field equation with a La-
grange multiplier for solving two-phase flow problems in the current study. Therefore, the motion of the phase-field
is described by:

∂φ

∂t
+ u · ∇φ− γ(t)

(
ε2∇2φ− F ′(φ) + β(t)

√
F (φ)

)
= 0 (1)

where φ represents the mixture of the phases (pure phases are φ = 1 and φ = -1), u is the velocity field, γ(t) is a
time-dependent mobility coefficient, given by,

γ(t) =
1

η
F
(∣∣∣∣∇φ · u· ∇φ|∇φ|2

∣∣∣∣) (2)

where F(ψ(x, t)) =

√ ∫
Ω

(ψ(x,t))2dΩ∫
Ω

1dΩ
and η is the RMS convective distortion parameter. ε is the thickness of the

diffuse interface layer (we define ε = he). The term F ′(φ) denotes the derivative of F (φ) with respect to φ, being
F (φ) the double-well energy potential F (φ) = 1

4 (φ2 − 1)2. The parameter β(t) is the time dependent part of the
Lagrange multiplier, given by,

β(t) =

∫
Ω
F ′(φ)dΩ∫

Ω

√
F (φ)dΩ

(3)

φ(R) = tanh

(
R√
2ε

)
(4)

3 Navier-Stokes equations

The Navier-Stokes equations govern the fluid flow, which lead to the following nonlinear mathematical prob-
lem to be solved: let us consider a space-time domain in which the flow takes place along the interval [0, tf ] given
by Ω ⊂ Rnsd, where nsd is the number of space dimensions. Let Γ denote the boundary of Ω. Find the pressure p
and the velocity u satisfying the following equations [4]:

ρ(φ)
∂u

∂t
+ ρ(φ)u· ∇u +∇p−∇· (µ(φ)∇u)− ρ(φ)g + sf(φ) = 0 in Ω× [0, tf ] (5)

∇·u = 0 in Ω× [0, tf ]. (6)

where ρ is the density, µ is the dynamic viscosity and sf(φ) is the surface tension force, given by:

ρ(φ) =
1 + φ

2
ρ1 +

1− φ
2

ρ2 (7)

µ(φ) =
1 + φ

2
µ1 +

1− φ
2

µ2 (8)

sf(φ) = σκnφδS (9)

The implementation is done considering κ = ∇·
(
∇φ
|∇φ|

)
, nφ = ∇φ

|∇φ| , δS = αε|∇φ|2 and α = 3
√

2
4 , that

leads to [7, 8]:

sf(φ) = σ∇· (nφ)∇φ3
√

2

4
ε|∇φ| (10)

where σ is the surface tension coefficient. α = 3
√

2
4 is a constant derived by the property of the Dirac delta

function. The order parameter φ needs to be locally in the equilibrium state. Hence, to match the surface tension
of the sharp-interface description, α must satisfy the following condition
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εα

∫ +∞

−∞

(
dφ

dR

)2

dR = 1 (11)

which leads to α = 3
√

2
4 . R is the coordinate normal to the interface.

4 Two-dimensional rising bubble

We simulate two benchmarks proposed by [9] (case A and case B). The task of the proposed benchmarks is to
track the evolution of a two-dimensional bubble rising in a liquid column, with the initial configuration described
in Fig. 1.

Figure 1. 2D rising bubble: Initial configuration and boundary conditions for the test cases.

The initial configuration is identical for both test cases and consists of a circular bubble of radius R = 0.25
m centered at [0.5, 0.5] m in a [1× 2] m rectangular domain. The no-slip boundary condition is used at the top and
bottom boundaries, whereas the free-slip condition is imposed on the vertical walls. Table 1 lists the parameters
used for this simulation.

Table 1. 2D rising bubble: Data.

Computational domain 1× 2 (m)

Grid sizes 0.05 to 0.00625 (m)

Number of time steps 960 (-)

Time-step 0.01 s

Bubble radius 0.25 m

Initial bubble position (x, y) = (0.5, 0.5) m

Liquid density (A) 1000 (B) 1000 kg/m3

Liquid viscosity (A) 10 (B) 10 kg/(ms)

Gas density (A) 100 (B) 1 kg/m3

Gas viscosity (A) 1 (B) 0.1 kg/(ms)

Surface tension (A) 24.5 (B) 1.96 N/m

Gravity (A) 0.98 (B) 0.98 m/s2
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We use an adapted mesh, initially with 20 × 40 bilinear quadrilateral elements, and after the refinement, the
smallest element has size 0.00625 m. We initially refine the region where the bubble is located in three levels. The
adaptive mesh refinement is based on the flux jump of the phase-field function error. We apply the adaptive mesh
refinement every two time-steps. The interface is modeled with ε = 0.00625. We define η = 0.05;

In Fig. 2a, we present the bubble shape at the final time (t = 3) for the test case A. We compare our results
with the obtained by [3]. Our prediction is in good agreement with the reference (Fig. 2a). However, the final
shape is not sufficient to validate the code. Therefore, we introduce the following quantities of interest, which will
be used to assist in describing the temporal evolution of the bubbles quantitatively:

Center of mass. To track the translation of bubbles, it is common to use the center of mass,

Xc =

∫
Ω− xdx∫
Ω− 1dx

(12)

where Ω− denotes the region that the bubble occupies.
Circularity. The “degree of circularity”, /c, introduced by [10], can be defined as,

/c =
Pa
Pb

=
perimeter of a area-equivalent circle

perimeter of the bubble
=

2πR

Pb
. (13)

Here, Pa denotes the perimeter or circumference of a circle with radii R which has an area equal to that of a
bubble with perimeter Pb. The perimeter and the area of the bubbles are calculated post-processing the simulation
results.

Rise Velocity. The mean velocity, Umean, with which a bubble is rising or moving, is a particularly interesting
quantity since it does not only measure how the interface tracking algorithm behaves but also the quality of the
overall solution. We define the mean bubble velocity as,

Umean =

∫
Ω− udx∫
Ω− 1dx

. (14)

In Figures 2b, 2c, 2d we compare the circularity, center of mass position, and rise velocity for test case A. All
groups have a good agreement for the quantities of interest.

In Fig. 3a, we present the bubble shape at the final time (t = 3) for the test case B. Again, we compare
our results with [3]. As shown in [3], although different codes predict a similar shape for the main bulk of the
bubble, there is no agreement concerning the thin filamentary regions. There are discrepancies when we compare
all quantities of interest. The circularity (Fig. 3b) agrees very well until about t = 1.75 seconds, and for later times
significant differences start to appear, that is, when the thin filaments are present. The center of mass, shown in
Fig. 3c, is predicted similarly despite the shape differences, and the mean rise velocity also presents a quite good
agreement between the different codes (Fig. 3d).

In Figure 4, we show the influence of the mobility coefficient. We show the final phase-field considering a
fixed mobility parameter γ = 1 and the time-dependent one with η = 0.05. When γ = 1, the interface preserving
capability is insufficient to keep the interface profile against the convective distortion. Therefore, at the bottom
of the bubble, the interface is subjected to an observable extensional distortion, which leads to an excessively low
Laplace pressure. This distortion changes the bubble shape, decreases the buoyancy force, and further reduces the
rise velocity. On the contrary, when the time-dependent mobility model with η = 0.05 is used, the interface profile
is preserved well, which gives a correct bubble shape and surface tension force calculation.

5 Conclusions

In this work, we develop a procedure capable of predicting two-phase flows, and thus, represent bubbles rising
in viscous liquids. To do so, we implement the Allen-Cahn phase-field model with a Lagrange multiplier coupled
with the Navier-Stokes equations. We apply the method to solve the 2D rising bubble benchmark, a well-known
test case to validate two-phase flow models.

The model provides for each simulation bubbles’ quantities of interest very similar to the ones found with
the convected level-set, presented in [3]. As the convected level-set model, which is very sensitive to a penalty
parameter, the Allen-Cahn phase-field model is very sensitive to the mobility coefficient, which is inversely pro-
portional to the RMS convective distortion parameter η. This sensibility was pointed in [11] and also verified in
our simulations.

Another fact about the mobility coefficient highlighted in this work is the importance of its being time-
dependent. For a fixed mobility coefficient, the phase-field may not be recovered, and, consequently, the surface
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(a) Bubble shape at t = 3. (b) Circularity.

(c) Center of mass. (d) Rise velocity.

Figure 2. 2D rising bubble: Test A results.

tension is not well evaluated. This lack of accuracy in the surface tension evaluation is similar to what happens
when using the convected level-set and a bad choice of the penalty constant.

The use of adaptive mesh refinement based on the flux jump of the phase-field function worked well for
the simulations. It is important to point out that the criteria used for the adaptive mesh refinement may change
depending on the problem. It is possible to consider the error based on the flux jump of the velocity field together
with the phase-field function, for example. The AMR/C procedure may save much computational effort, especially
for two-phase flows simulations, in which we need a large refinement near the interface between fluids.

For future works, we would like to extend the simulations to 3D problems and more complex geometries, as
splashing and coalescence of bubbles.
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(a) Bubble shape at t = 3. (b) Circularity.

(c) Center of mass. (d) Rise velocity.

Figure 3. 2D rising bubble: Test B results.
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(a) Constant mobility coefficient γ = 1. (b) Time-dependent mobility model at η = 0.05.

Figure 4. 2D rising bubble: Mobility coefficient.
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