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Abstract.
In this paper we demonstrate the application of Physics-Informed Neural Networks (PINNs) for learning

the solution of the parametric steady incompressible Navier-Stokes equations for multiple flow regimes for the
well-known channel-driven cavity flow problem, given only the geometry and boundary conditions.
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1 Introduction

Physics-Informed Neural Networks (PINNs) have been successfully used for a wide range of problems, in-
cluding, but not limited to, wave propagation, design optimization, fluid flows, Bayesian parameter estimation, and
more. For recent reviews on the state-of-the-art of PINNs, see [1, 2]. Even though PINNs may not seem efficient
for solving simple forward problems, PINNs shine when solving parametric and inverse PDE-driven problems
[3, 4] that could be not only complicated to solve with traditional methods but impossible sometimes. Parametric
PDEs arise (sometimes implicitly) in diverse areas in the Oil & Gas industry and are usually applied to the optimal
systems design and simulation of multiple scenarios. The ultimate goal is to use a trained PINN as a surrogate of a
PDE-driven problem, avoiding the necessity to compute costly solutions for multiple scenarios. This is particularly
useful in field inspection and maintenance, where decisions must be taken quickly, possibly with the aid of mobile
devices only.

The remainder of this work is organized as follows. The following section presents the steady incompressible
parametric Navier-Stokes equations, giving particular attention to different forms of deriving the equations such
that the continuity equation is automatically satisfied. Section 3 briefly reviews the basic PINNs theory and how
they are applied to the equations described in Section 2. Numerical examples showing how the PINNs can learn
the solution of the parametric steady incompressible Navier-Stokes equations for multiple flow regimes for the
well-known channel-driven cavity flow problem are given in Section 4. The paper ends with a summary of our
main conclusions.

2 Navier-Stokes Equations

The Navier-Stokes (NS) equations governing steady, incompressible fluid flows can be written in terms of
different sets of variables. Changing the way we solve the Navier-Stokes equations may result in some benefits,
such as the automatic satisfaction of the continuity equation. Further, the NS equations depend on a parameter,
the Reynolds number, Re = ||u||L

ν , where ||u|| is the velocity magnitude, L is a characteristic length, and ν is
the kinematic viscosity of the fluid. Next, we briefly present the NS equations written in terms of their primitive
variables, the well-known Stream function-Vorticity, and a different Stream function-Pressure formulation. Other
formulations exist [5, 6], but we restrict ourselves to the ones below.

Primitive variables

The steady incompressible NS equations in primitive variable reads:
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(u · ∇)u +∇p− 1

Re
∇2u = 0, ∀x ∈ Ω, (1)

∇ · u = 0, ∀x ∈ Ω, (2)

where u = {u, v} is the velocity vector, p is the pressure. Eqs. (1) and (2) are respectively the momentum
and continuity equations. These equations are supplemented by proper Dirichlet, Neumann, or mixed (Robin)
boundary conditions, that is, the known data.

The ψ – ω formulation (Stream function-Vorticity)

For a 2D flow, one may write the NS equations in terms of the vorticity ω =∇× u and the stream function
ψ. By using this scheme, we can remove the necessity of including any information about the pressure p whose
gradients are included in the momentum equations (Eq. (1)). Finally, this scheme exactly satisfies the continuity
equation (Eq. (2)) due to the particular choice for the velocity field shown in Eq. (5). The ψ – ω equations are
written as follows:

u · ∇ω − 1

Re
∇2ω = 0, ∀x ∈ Ω, (3)

∇2ψ + ω = 0, ∀x ∈ Ω, (4)

u =

{
∂ψ

∂y
,−∂ψ

∂x

}
(5)

where ω is the z−component of the vorticity vector (assuming that the flow is in the x− y plane), ψ is the stream
function. If we need to recover the pressure field, one can solve the so-called Poisson Pressure Equation (PPE).
Boundary conditions for the stream function and vorticity should be specified.

The ψ – p formulation (Stream function-Pressure)

Another alternative for solving a 2D flow problem with the continuity equation being exactly satisfied is to
write the velocity components in terms of the stream function as shown in Eq. (7) and plug it into the momen-
tum equations (Eq. (6)). We can then solve a system of two third-order PDEs in terms of ψ and p, where it is
straightforward to derive the velocity components from the stream function. This scheme is then written as:

(u · ∇)u +∇p− 1

Re
∇2u = 0, ∀x ∈ Ω, (6)

u =

{
∂ψ

∂y
,−∂ψ

∂x

}
. (7)

The corresponding set of boundary conditions should be added to equations (6) and (7) to complete the
problem description.

3 Physics-Informed Neural Networks

In this section we briefly introduce the Physics-Informed Neural Networks (PINNs) and how they can be used
to learn the solution of the parametric steady incompressible NS equations for multiple flow regimes. Consider the
problem presented in Eqs. (8)-(10) whose solution is given by u(x) with x ∈ RN and u ∈ RS with its physical
parameters λ [3],

f

(
x;u;

∂u

∂x1
, ...,

∂u

∂xN
;
∂u2

∂x1x1
, ...,

∂u2

∂x1xN
;λ

)
= 0, ∀x ∈ Ω, Ω ⊂ RN , (8)

u(x) = g(x), ∀x ∈ Γg , Γg ⊂ RN−1, (9)

h

(
x;

∂u

∂x1
, ...,

∂u

∂xN
;λ

)
= 0, ∀x ∈ Γh, Γh ⊂ RN−1 (10)

in which Eq. (8) is the governing PDE, Eq. (9) represents the Dirichlet boundary conditions, while Eq. (10)
encapsulates both, Neumann and Robin boundary conditions. Furthermore, Ω denotes the internal domain, Γh and

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



F. Author, S. Author, T. Author

Γg denote the natural and essential boundaries, respectively. Note that in the present case, the physical parameter
is the Reynolds number, that is, λ = {Re}.

In general, PDEs are difficult to solve and require approximation to be solved numerically. One can try to
approximate the differential operator, but it is also possible to approximate the function space of the solution u. The
solution can be approximated using bases composed of monomial functions, piece-wise linear functions, or even
by the space of the Neural NetworksHNN . If we choose to approximate the solution u(x) by û(x;θ) ∈ HNN in
Eqs. (8)-(10) we obtain

f

(
x;
∂û(x;θ)

∂x1
, ...,

∂û(x;θ)

∂xN
;
∂û2(x;θ)

∂x1x1
, ...,

∂û2(x;θ)

∂x1xN
;λ

)
= R(x;θ;λ) (11)

whereR(x;θ;λ) is called the residual of the PDE and θ are the parameters of the neural network.
For solving Eq. (8) using û(x;θ) as an approximation for its solution u(x), one should minimize the residual

(Eq. (11)) at a set of residual points TR = {x1,x2, ...,xR} with TR ⊂ Ω and also satisfy the boundary conditions
with a acceptable accuracy at a set of points TB ⊂ Γ. To measure how good is the approximation of the residual of
the PDE we write,

LR(θ; TR) = MSE{R(x;θ;λ),0}, (12)

and for measuring the quality of the approximation of the boundary conditions

LBC(θ; TBC) = MSE

{
h

(
x;

∂u

∂x1
, ...,

∂u

∂xN
;λ

)
,0

}
+MSE{û(x;θ), g(x)}, (13)

where MSE{ytrue(x),ypred(x)} denotes the Mean Squared Error between the vectors ytrue(x) and ypred(x).
Notice that, Equation (13) involves not only the information about the boundary conditions, but also the initial

conditions for time-dependent problems since the components of x denotes not only the spatial dimensions but also
time. With these measures in hand, we can now write the final loss function for informing the physical laws to a
neural network during its training phase,

L(θ; T ) = wRLR(θ; TR) + wBCLBC(θ; TBC) (14)

where wR and wBC are the weights of the loss function, which play an essential role in the minimization of the
loss function.

4 Results

The problem consists of solving a 2D incompressible flow problem governed by the NS equations, and it is
inspired by the one solved by Mahmood et al.[7] with a parabolic x−velocity profile at the inlet with umax = 0.3,
no-slip boundary conditions for the top and bottom walls, and a do-nothing boundary condition for the outlet. In
[7] this problem is solved for Re = 10, 20, 50, and 100, while we solve for all the possible Reynolds numbers
such that Re ∈ [10, 100]. We use a PINN that is expected to predict the solution of the NS equation at any spatial
coordinates, given the Reynolds number for a situation in which the only data available consists of the geometry
and boundary conditions. The geometry of the problem is shown in Fig. 1, as well as the residual and boundary
points distribution. For comparison, we first solve the proposed problem for Re = 10, 20, 50, and 100 using the
Finite Element Method (FEM) with Taylor-Hood elements. The FEM solver is implemented using Firedrake [8–
12]. The FEM solution is shown in Fig. 2, and it will be assumed to be the ground truth. Notice that the ground
truth will not be used as training data for the PINNs.

In contrast to the FEM solution which is given for a finite set of mesh points and needs to be completely re-
solved for different Reynolds numbers, we show a PINN-based alternative for solving the parametric NS equations.
The PINN will learn the problem solution at any coordinates x and y, given the Reynolds number Re. If one wants
to solve the parametric NS equations through the ψ – ω scheme (Eqs. (3) - (5)), the solution for the parametric
NS equations would then be given as ψ = ψ(x, y;Re) and ω = ω(x, y;Re) as shown in Fig. 3a. Similarly, the
solution for the parametric NS equations using the ψ – p formulation would be given as ψ = ψ(x, y;Re) and
p = p(x, y;Re) as shown in Fig. 3b. Figure 3 illustrates for both formulations how the PINN scheme works,
showing the interaction between the PINN approximations and the PDEs for each scheme.

For both schemes in Figure 3, we use a neural network with 4 hidden layers and 32 neurons in each layer. We
use the hyperbolic tangent as the activation function and a Fourier features map [13] in the form,

γ(x, y;Re) = [x, y,Re, cos 2πx, cos 2πy, sin 2πx, sin 2πy]
T
, (15)
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Figure 1. Channel-driven cavity flow problem: Boundary and residual evaluation points.
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Figure 2. Channel-driven cavity flow problem: Ground truth solutions for Re = 10, 20, 50, and 100.

which contributes to improve the convergence in our experiments. In each iteration we use full batch for the
residual (e1, e2) and boundary (BCũ and BCṽ) points x and y components in Figure 3, while the Re component is
always sampled as U(10, 100). Therefore, the PINN is trained to solve the flow problem for ALL Re ∈ [10, 100]
at the same time. As the optimizer, we use the RMSProp optimizer with a fixed learning rate of 10−3 and let the
model train for 800, 000 iterations. Our code is implemented using TensorFlow 2.4.1 [14] and we enable the XLA
compiler, which speeds-up the training process 4 to 5 times.

Along the training process, we compare the predictions of our model against the ground truth solutions for
Re = 10, 20, 50, and 100, so we can see how fast the PINN learns to solve the parametric NS equations as shown
in Fig. 4, that depicts the R2 score history for both NS formulations. Notice that, for this particular problem,
both schemes have more difficulty in solving the y−velocity component. Furthermore, as expected, the solution
becomes more difficult as we increase the Reynolds number. At the end of the training process, we also evaluate
the R2 score for all the configurations, and it turns out that the worst result is obtained from the approximation of
the y−velocity component for Re = 100 whose R2 score is equal to 0.93. It is also worth noticing that the ψ – p
PINN scheme converges slower than the ψ – ω scheme, particularly for the y−velocity component.

In Figure 5 we can see the magnitude of the velocity component error in the domain at Re = 100. The
error is the absolute value of the difference between the ground truth and the PINN solution. Errors are small
but with peaks at some regions in the domain. The regions with high errors are larger for the ψ – p formulation
when compared with those obtained with the ψ – ω formulation. For the ψ – ω formulation, the high errors are
concentrated in the right cavity corner.
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Figure 3. PINN schemes for solving the Parametric Navier-Stokes Equations.

5 Conclusions

We find that even though PINNs take considerably longer to train when it comes to solving the parametric NS
equations, the advantages of instantaneously predicting the solution given a triplet {x, y,Re} surpass the burden of
the training process. If we take, for instance, our worst result, predicting the y−velocity forRe = 100, itsR2 score
achieves the mark of 0.9 within almost 380, 000 iterations for the ψ – ω formulation, which in our experiments
would take the same amount of time for solving the problem 30 times for Re = 100 using Firedrake. Furthermore,
once the PINN is trained, the time for making the predictions for any {x, y,Re} is negligible. We can do thousands
of predictions using the PINN while we solve a single problem using traditional methods.

In addition, because of the 3rd order derivatives of ψ w.r.t. x and y in the ψ – p formulation, it takes ≈ 4
times more to perform an iteration when compared with the ψ – ω formulation, not to mention the lower quality of
the solution.

As future works, we envisage trained PINNs immersed in visualization software as quick field inspection
and maintenance tools, possibly in mobile devices such as tablets and phones. The extension of such use to
more complex situations involving unsteady, non-Newtonian flows with parametrized geometries is also worth
mentioning.
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(b) R2 score evolution for the y−velocity and Re = 10.
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2 4 6 8

·105

0.9

0.95

1

Iteration

R
2

sc
or

e

ψ – ω
ψ – p

(e) R2 score evolution for the x−velocity and Re = 50.
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(f) R2 score evolution for the y−velocity and Re = 50.
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Figure 4. R2 score evolution for several Reynolds numbers.
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Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available
from tensorflow.org, 2015.

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021


	Introduction
	Navier-Stokes Equations
	Physics-Informed Neural Networks
	Results
	Conclusions

