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Abstract. In seismic exploration, many decisions are based on interpretations of seismic images, which are affected by the
presence of multiple sources of uncertainty. Uncertainties exist in data measurements, source positioning, and subsurface
geophysical properties. Reverse time migration (RTM) is a high-resolution depth migration approach useful for extracting
information such as reservoir localization and boundaries. RTM, however, is time-consuming and data-intensive as it
requires computing twice the wave equation to generate and store an imaging condition. RTM, when embedded in an
uncertainty quantification algorithm (like the Monte Carlo method), shows a many-fold increase in its complexity and
cost due to the high input-output dimensionality with computationally intensive requirements’. Hence, one of the main
challenges facing uncertainty quantification in seismic imaging is reducing the computational cost of the analysis. In this
work, we propose an encoder-decoder deep learning surrogate model for RTM under uncertainty. Inputs are an ensemble
of velocity fields, expressing the uncertainty, and outputs the seismic images. We show by numerical experimentation
that the surrogate model can reproduce the seismic images accurately, and, more importantly, the uncertainty propagation
from the input velocity fields to the image ensemble.
Reverse time migration, Deep Learning, Surrogate Modeling, Uncertainty Quantification

1 Introduction

Seismic imaging is employed to delineate the salient geological features of the Earth subsurface. Imaging methods
are popular in the Oil & Gas industry as they are designed to be focused on the more essential characteristics: the horizons
bounding the regions of interest. They can also be used in conjunction with inverse methods such as Full Waveform
Inversion [1]. Imaging methods are designed and built departing from the integration of specialized optical (illuminating)
principles and physics-based models describing the wave propagation through heterogeneous media. A critical aspect
arising from such arrangement is the potential computational cost required, as a large domain is to be illuminated, which
implies solving partial differential equations (PDEs) associated with the wave models in that area. The situation tends to be
more complicated as the excitation signals bear high-frequency content, which demands very fine grids in space and time.
Such time-consuming tasks often hamper the use of high-fidelity codes constructed upon physics-based models. That
becomes a more critical issue whenever one faces many-query applications like sensitivity analysis, design, optimization,
or uncertainty quantification.

In this work, we develop a machine-learning model to alleviate computational costs to provide seismic images
with quantified uncertainty [2]. In this context, we propose a Monte Carlo method (MC) to sweep a large ensemble of
plausible velocity fields obtained by approximate methods, and, therefore, prone to uncertainties, to compute an ensemble
of images aiming at characterizing the propagated uncertainties along with the seismic image processing. Here, we apply
a deep learning architecture based on generative adversarial network (GAN) [3] to obtain a surrogate model for the RTM
imaging under uncertainty. The main aspect of this approach is to train simultaneously two models. A generative model
that returns the probabilistic characterization of the data, and a discriminative model that estimates the probability that a
sample came from the training data rather than a generative model. More specifically, we construct the surrogate model
using a generative model as baseline and the encoder-decoder architecture proposed by [4, 5] designed for problems cast
as image-to-image regressions. Also, we build the discriminative model using the architecture proposed by [6]. Such
surrogates are nonlinear mappings linking the uncertain velocity field to the seismic images. It is worth to highlight
that differently from usual surrogates, we do not replace only a forward solver associated to a PDE, but the whole more
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expensive imaging process. The surrogate can handle the high-dimensional inputs (velocity fields) and outputs (seismic
images), leading to cost savings in processing and memory storage. We demonstrate through one example that such an
approach enables producing seismic images with quantified uncertainty. Indeed, it can accurately reproduce the ensemble
of images resulting from the MC uncertain propagation with much less computational effort. Moreover, it uses a limited
training data as expected, which was confirmed by our results and efficiency estimation.

2 Reverse Time Migration under Uncertainty

RTM is a high-resolution depth migration technique providing useful subsurface images for extracting information
such as reservoir localization and boundaries [7]. RTM relies on the two-way wave propagation equation, resulting in an
imaging condition (IC) [8] computed over the space-time domain to be imaged. More specifically, the wave equation is
solved twice, the first time to compute the forward-propagated wave due to seismic sources, followed by the computation
of the backward-propagated wave induced by the recorded seismograms. Both solutions are needed to compute the IC.
We calculate the forward wave isotropic acoustic case by solving,

∇
2 p(r, t)− 1

v2(r)
∂ 2 p(r, t)

∂ t2 = f (rs, t),

p(r, t) = 0 on ∂ΩD and Bp(r, t) = 0 on ∂Ωinf, (1)

p(r,0) = 0 and
∂ p(r,0)

∂ t
= 0, r ∈Ω,

where Ω⊂R3 denotes the domain to be imaged, ∂Ω= ∂ΩD∪ ∂Ωin f ⊂R2 is the domain boundary and ∂ΩD and ∂Ωin f are
non-overlapping boundary partitions. ∂ΩD is the portion of the boundary where Dirichlet boundary conditions are applied,
representing, for instance, the free-surface. The operator B represents the non-reflecting boundary condition [9] applied
on ∂Ωin f . The pressure (the forward-propagated source wavefield) p(r, t) is defined at the position r = (rx,ry,rz) ∈Ω and
time t ∈ [0,T ]. Moreover, v(r) is the compressional wave velocity spatial field, and f (rs, t) is the seismic source. The
vector rs represents the seismic source position. The backward-propagated wavefield is calculated solving,

∇
2 p̄(r,τ)− 1

v2(r)
∂ 2 p̄(r,τ)

∂τ2 = s(rr,τ),

p̄(r,τ) = 0 on ∂ΩD and Bp̄(r,τ) = 0 on ∂Ωinf (2)

p̄(r,0) = p(r,T ) and
∂ p̄(r,0)

∂τ
=

∂ p(r,T )
∂τ

, r ∈Ω.

which is an equation similar to (1), but with a different source s(rr,τ), that is, the recorded signals at the receivers
positioned in rr. Besides, the evolution in Eq. (2) is over the reverse time τ = T − t. Thus, the backward-propagated
wavefield p̄(r,τ) is defined in Ω and τ ∈ [0,T ].

The IC dictates the quality and fidelity of the final RTM image. There are several possibilities, for instance, excitation
ICs [10, 11], extend ICs [12, 13], wavefield decomposition ICs [14], and the zero-lag cross-correlation ICs [7, 15]. We
have chosen the zero-lag cross-correlation between the forward and backward propagated waves at each point in Ω,

I(r) =
∫ T

0
p(r, t) p̄(r,τ) dt. (3)

As we wrap RTM into a sampling method, for taking into consideration the input uncertainties, the overall computa-
tional cost rises proportionally to NMC, the cardinality of the ensemble of possible velocity fields. For each MC iteration,
we solve the wave equation twice, one for the seismic source and other for the seismograms associated with it. The com-
putation of the imaging condition uses both solutions (source wavefield, and receiver wavefield), retrieving from persistent
storage the source wavefield to build the migrated seismic section and stacking the partial results over time (I∑ t ), and over
the number of seismograms (I∑shot id). At the end of MC we have the discrete imaging condition set {I1,I2, · · · ,INMC}
where each Ii is a vector in RN .

3 Deep Learning Surrogate

The main goal of surrogate models is to replicate the multivariate input-output mapping provided by physical models
governed by PDEs to save computational costs. Performing uncertainty quantification in such conditions is often ham-
pered whenever one faces high-dimensionality, the so-called curse of dimensionality. As pointed out in the literature,
DNNs have proved successful in such situations by exploiting low-dimensional latent spaces and sophisticated training

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



F. Author, S. Author, T. Author

Figure 1. RTM deep convolutional encoder-decoder generative adversarial network architecture. Inputs: ensemble of
velocity fields v ∈ RN . Outputs: corresponding ensemble of image conditions I ∈ RN .

methods [16]. We aim to construct and evaluate the performance of a generative adversarial network (GAN) [3] acting as
a surrogate model for the RTM imaging under uncertainty. The main aspect of this approach is to train simultaneously
two models. More specifically, a generative model that returns the probabilistic characterization of the data, and a dis-
criminative model that estimates the probability that a sample came from the training data rather than a generative model.
Here, we construct the generative model using as baseline the encoder-decoder architecture proposed by [4] and designed
for problems cast as image-to-image regressions. Also, we build the discriminative model using the architecture proposed
by [6].

Figure 1, provides the big picture of our end-to-end solution, depicting the main components of the encoder-decoder
network. In our particular application, the input for the deep learning surrogate is the ensemble of heterogeneous velocity
fields, and the outputs are the corresponding imaging conditions given by Eq. (3) for each sample of the velocity field
ensemble. Inputs and outputs are high-dimensional spatial fields, and the surrogate modeling cast as a field-to-field
regression. This approach is image-inspired. Then, it relies on connecting each pixel of the input field to an output pixel,
where pixels correspond to grid points in the input computational mesh and output fields. The trained network maps the
velocity v ∈ RN into the IC field I ∈ RN .

The surrogate g is expressed formally in a compact notation as,

ŷ = g(x;w), (4)

where ŷ is the surrogate prediction (imaging condition, I) for an input x (that is, a velocity field v), and vector w contains
the parameters of the neural network. Training the neural network means learning parameters w using data from the set
D = {(xi,yi)}, i = 1 · · ·Ntrain obtained from simulations with the RTM algorithm, where Ntrain is the number of samples
in the training set. The stochastic gradient descent algorithm computes the unknown network elements for a given loss
function [17]. The adversarial networks are trained jointly in two phases for each iteration. Firstly, the generative model
is trained using the following loss function,

LED =
1

Ntrain

Ntrain

∑
i=1
‖ŷi−yi‖2

2 +αLG (5)

where ŷi = gi(xi,w). Here, LG measures the generative model (·) ability to fool the discriminative model D(·), and it is
given by

LG =− 1
Ntrain

Ntrain

∑
i=1

log {D[G(yi)]} (6)

where α represents a weight factor balancing between the two losses and a value of α = 0.01 is used. Also, the discrimi-
native model is trained following the given loss function,

LD =− 1
Ntrain

Ntrain

∑
i=1
{log [D(yi)]+ log [1−D[G(yi)]]}, (7)

to distinguish the true sample from the fake sample produced by the generative model G(yi).

4 Numerical experiments

Here, we present an example to demonstrate the ability of the deep convolutional encoder-decoder generative ad-
versarial surrogate in replacing the original two-way wave equation RTM algorithm efficiently. The example deals with
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Figure 2. Marmousi Geologic model.

the velocity field of the Marmousi model [18]. The seismic source term considered in the present work is a Ricker-type
wavelet [19]. More specifically, we use the Marmousi geologic model, as shown on Fig. 2. Also, the deep convolutional
encoder-decoder generative adversarial is constructed using the open platform Tensorflow [20]. The Adam optimizer
algorithm [21] is employed for parameter learning, considering a learning rate of 1×10−3 for the generative model and a
learning rate of 1× 10−4 for the discriminative model. We compute a total of 1200 samples by considering the velocity
magnitude constant in the interior of each geological layer. Therefore, each velocity field in the ensemble has the form,

v =
nl

∑
l=1

vl (1+σlξl) Pl (8)

where nl is the number of geological layers, vl is the mean velocity within each geological layer, σl is the standard
deviation, here assumed as 5%, ξl ∼ U[−1,1] is a random variable following a uniform distribution, and Pl is a N-
dimensional vector containing 1 in the components corresponding to the l-th geological layer grid points and 0 otherwise.
After that, we apply a moving harmonic average to v with a window length of 20 grid points to mimic the velocity fields
computed by parameter model building techniques like tomography or full-waveform inversion. To analyze the surrogate
training convergence, out of 1200 samples computed with the original RTM model, we create three training datasets with
300,600, and 900 samples each. We used the remaining Ntest = 300 samples to test the trained network.

Accuracy is measured using the distance between predictions with the surrogate model and those computed with the
RTM original model. To evaluate the surrogate model quality, we consider the coefficient of determination (R2-score)
[22] and the root mean squared error (RMSE) metrics,

R2 = 1− ∑
Ntest
i=1 ‖yi− ŷi‖2

2

∑
Ntest
i=1 ‖yi−y‖2

2

(9)

and

RMSE =

√√√√ 1
Ntrain

Ntrain

∑
i=1
‖yi− ŷi‖2

2. (10)

where y = 1
Ntest

∑
Ntest
i=1 yi is the mean of test samples. Also, we measure the structural similarity (SSIM) between the

predicted seismic image and original RTM, and it is computed over local windows of the image [23]

SSIM(el,ek) =
2µel µek + c12σelek + c2

el2 + ek2 + c1σ2
el
+σ2

ek
+ c2

(11)

Also, we intend that the surrogate model returns not only good predictions of seismic images but also accurate
estimations of quantities that characterize the uncertainties in such images. To measure the degree of uncertainty in the
seismic images, we follow the approach proposed in [24]. In their approach, the degree of uncertainty is expressed by a
confidence index that represents the pointwise normalized standard deviation, where low values represent high variabilities
and high values the opposite. The confidence index is,

c(r) =
σmax−σ(r)
σmax−σmin

, (12)

where c(r) is the confidence index at position r, and σmin and σmax are the minimum and maximum field standard devi-
ations, respectively. Another form of measuring the degree of uncertainty is the coefficient of variation, defined as the
pointwise ratio between the standard deviation and the mean,

cv(r) =
σ(r)
µ(r)

(13)

where µ(r) is the expected value at position r.
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Figure 3. Generator and discriminator loss values with number of epochs.

Figure 4. Accuracy metrics as a function of the number of training samples.

Figure 3 shows the decay of the generator loss (5) as a function of the number of epochs during the training process,
for training data sets ranging from 300 to 900 samples. Note that the LED stabilizes after 50 epochs for all cases and that
for smaller data sets, we see higher error values. Here, we also observe that the discriminator loss quickly converge to the
optimal value [3]. Also, we calculate the coefficient of determination R2 to assess the accuracy of the machine learning
model with the remaining 300 samples. We observe that the surrogate model accuracy is very satisfactory for the training
with 900 samples, reaching R2 ≥ 0.95, as shown in Fig. 4. Furthermore, Fig. 4 also depicts the structural similarity
(SSIM) between the predicted seismic image and the original RTM. Here is it worth remarking that the machine learning
model accuracy is good even in small training data scenarios.

To further illustrate how the surrogate model approximates the predictions of the original model with good accuracy,
Fig. 5 shows comparisons for three realizations chosen randomly from the test set. We observe that the surrogate presents
good results, returning good predictions of the seismic image amplitudes. We also depict a comparison between the
confidence index, c(r), and the coefficient of variation, cv(r), predicted by the original and surrogate models with Ntesting =
300 testing samples, see Fig. 6. Besides, we introduce a discrete version of a L2 relative error between two spatial fields
g, one computed with the RTM and the other by the surrogate as,

eg
2 =

1
N

N

∑
i=1

(
gi

RT M−gi
s

gi
RT M

)2

(14)

where the subscripts refer to how we compute the field g. This index is an average of the pointwise relative error for all N
grid points. The visual resemblance of the images in Figure 5 is quantified using equation (14), leading to relative errors
that stay below 2%. For the indexes in Figure 6, the relative errors computed with equation (14) are less than 2%.
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Figure 5. Randomly selected samples of seismic images in the test data set computed by the RTM (left) and the surrogate
model (right). The relative errors in the image condition, e2

g, are lower than 2%.

Confidence index - Surrogate model Confidence index - Relative error

Coefficient of variation - Surrogate model Coefficient of variation - Relative error

Figure 6. UQ indexes - confidence index, c(r), and coefficient of variation, cv(r) - surrogate model (left) and relative
errors (right). The relative errors to the RTM model are lower than 2%.

5 Conclusions

We propose a deep convolutional encoder-decoder generative adversarial network architecture to replace the costly
RTM technique on producing seismic images. This surrogate model builds a scalable image–to–image mapping, coping
with the high dimensionality of both the heterogeneous velocity fields that serve as inputs and images outputs. Such
surrogate has revealed to be very efficient in the context of UQ many-query tasks, as demonstrated by our numerical
example. Also, we place our contribution in the emerging area of physics-informed machine learning, where the final
model, in many different ways, blends two main components: often expensive computational models relying on first
principles and phenomenological closure equations, and machine learning data-driven tools.
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