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Abstract. Inferring the capacity of reservoirs is one of the essential tasks in the oil and gas exploration process.
The characterizations of transport and storage are crucial for reservoir evaluations and, therefore, depend on the
permeability and porosity. Although estimating the permeability in porous media is challenging since experi-
mental data gathering is very costly, estimations are not accurate. Machine Learning (ML) methods have been
applied to predict the permeability in oil-producing areas as cost-effective and quick characterization strategies.
However, the quality predictions of ML algorithms depend on the available data quality and the algorithm param-
eters optimization. In this work, in order to have a comprehensive understanding, we investigate the permeability
inference employing algorithms as Multivariate Linear Regression, Decision Tree Regression, Support Vector Ma-
chines (SVM) and Multilayer Perceptron (MLP). The ML approach was constructed and tested via data samples
experimentally gathered from Australia and Papua New Guinea region. Data pre-processing metrics are optimized.
The most relevant feature was analyzed and optimized parameters improved the inferences as expected. The mean
squared error and root mean squared error for the test set are on the order of 0.0066 and 0.0811, respectively,
indicating that our results are very promising.
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1 Introduction

One of the most important concerns in petroleum engineering is the reservoir characterization. According to
Ahmadi and Chen [1], permeability plays an essential role in any reservoir evaluation plan because it is a crucial
property for oil wells storage and transport characterizations. Chehrazi and Rezaee [2] discuss that permeability is
a key parameter in determining the economic value of hydrocarbon accumulation. Since it regulates the directions
of the reservoir fluids and the flow through porous media, Ahmadi and Chen [1] indicate that accurate estimation
of permeability is essential for the improvement of oil/gas recovery, CO2 sequestration, selection of cost-effective
production schemes, and optimization of oil well placement. Suitable magnitudes for permeability can be exper-
imentally obtained from core samples or well logs. However, since the coring process is very costly and time
intensive, the oil industry requires the development of cost-effective and quick approaches for reservoir evaluation
and characterization. Chen et al. [3] and Ahmadi and Chen [1] discussed that to achieve these requirements, statis-
tical analysis, and machine learning algorithms had been widely employed as alternative approaches to estimating
the permeability from petrophysical logs and the data from the existing cores.

One of the most challenging concerns about the use of Machine Learning as a modeling approach is data
quality. Gudivada et al. [4] enumerate that poor-quality data can be manifested in the form of missing data, dupli-
cate data, highly correlated variables, a large number of variables, and outliers. It can pose significant problems for
building Machine Learning models. Consequently, low-quality data can affect negatively the permeability estima-
tions performed by the Machine Learning predictors and not provide results suitable to be used in real problems.

In this paper, we investigate the quality of the data provided by Porosity and Permeability Database - Record
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1990/88 [5] employing four Machine Learning algorithms to estimate the oil reservoirs permeability. They are:
Regularized Multivariate Regression (Ridge) (Montgomery et al. [6]), Decision Tree Regressor (DTR) (Breiman
et al. [7]), Support Vector Regressor (SVR) (Awad and Khanna [8]) and Multilayer Perceptron (MLP) (Alpaydin
[9]). In addition, data pre-processing techniques and RReliefF feature selection algorithm are employed for data
preparation and dimensionality reduction, respectively.

The next sections are organized as follows: Section 2.1 describes the data collecting and data preprocessing
steps; Section 2.2 revises the employed Machine Learning algorithms; Section 2.3 establishes the grid search
approach; Section 2.4 states the features selection approach; Section 2.5 presents the evaluation metric for model
selection; and Section 2.6 details the performance evaluation metrics for the chosen model. Finally, Section 3
analyse the obtained results and Section 4 concludes the paper.

2 Materials and Methods

2.1 Data Acquisition

The assessments were executed with data provided by Porosity and Permeability Database - Record 1990/88
[5], which is a report consisting of important petro-physical data regarding 551 oil reservoirs from Australia. From
the information provided by the report, we gathered the following features: (i) region; (ii) longitude; (iii) latitude;
(iv) sample depth; (v) porosity; (vi) if the reservoir is onshore or offshore; and (viii) horizontal permeability. It
resulted in 6278 samples.

The exclusion criterion was the missing values: if at least one feature is null, the sample is excluded. It
reduced the dataset to 2060 samples, which were split into 1648(80%) samples for training and validation and
412(20%) samples for testing. Since longitude and latitude features are in different ranges from the other ones, all
dataset was normalized with mean equal to zero and deviation equal to one.

2.2 Machine Learning Algorithms

Decision Tree Regressor (DTR). Decision Trees are supervised learning methods applied in both regression and
classification. The first algorithms are from 1980’s and one of the most popular of them is called CART (Classi-
fication And Regression Trees). It builds a decision tree by partitioning the feature space into several sub-spaces
taking a recursive binary splitting, such that the samples with similar target values are grouped. A common cri-
terion to evaluate the node quality in Decision Tree Regressors (DTR) is the Mean Squared Error (MSE). More
details can be obtained in Breiman et al. [7], James et al. [10], and Hastie et al. [11].

Regularized Multivariate Regression (Ridge). Montgomery et al. [6] define a Multivariate Regression model as
a regression model that involves more than one independent variable. The dependent variable Y is described as
a linear function of k independent variables or regressors: Y = b0 + b1X1 + b2X2 + . . . + bnXn. The parame-
ters bi, i = 0, 1, . . . , k are called the regression coefficients. This model permits the computation of a regression
coefficient bi for each independent variable Xi and this mathematical operation is usually performed by the least
squares method. When the data is nonorthogonal poor estimates of the regression can be obtained. It results in
a vector of least squares parameter estimates too far from the average. Consequently, the absolute values of the
least squares estimates are too large and they are very unstable. One way to reduce this problem is to shrink the
regression coefficients by imposing a penalty on their size. This approach is called Ridge Regression and it can
be understood as a regularized multivariate regression. More details can be obtained in Montgomery et al. [6], in
James et al. [10], and in Hastie et al. [11].

Support Vector Regressor (SVR). The Support Vector Regressor (SVR) model is a generalization of Support Vec-
tor algorithms proposed by Cortes and Vapnik [12] to become applicable to regression problems. According to
Awad and Khanna [8], the SVR has been proven to be an effective tool in real-value function estimation. A
supervised-learning approach trains a symmetrical loss function, which equally penalizes high and low misesti-
mates. The Vapnik’s-insensitive approach is employed to build a flexible tube of minimal radius symmetrically
around the estimated function, such that the absolute values of errors less than a certain threshold are ignored both
above and below the estimate. It means that points outside the tube are penalized, but those within the tube, either
above or below the function, receive no penalty. They also explain that the main advantages of the SVR are its
computational complexity that does not depend on the dimensionality of the input space, followed by its excellent
generalization capability, with high prediction accuracy. More details can be obtained in Awad and Khanna [8], in
Cortes and Vapnik [12], in Smola and Scholkopf [13], and in Hastie et al. [11].

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Torres, A. M., Faria, C. O., Figueiredo, K.T.

Multilayer Perceptron (MLP). According to Alpaydin [9], a Multilayer Perceptron (MLP) is a feedforward net-
work with intermediate or hidden layers between the input and the output layers. Abirami and Chitra [14] describe
the MLP process as follows: The input layer receives the input data to be processed. The output layer performs
the required task such as prediction and classification. An arbitrary number of hidden layers placed in between
the input and output layer is the actual computational engine of the MLP. Like a feed forward network, the data
flow in the forward direction from the input to the output layer. The neurons in the MLP are trained with the
backpropagation learning algorithm. MLP’s are designed to approximate any continuous function and can solve
problems that are not linearly separable. The major use cases of the MLP are pattern classification, recognition,
prediction and approximation. When used for regression, the network can approximate nonlinear functions of the
input. More details can be obtained in Awad and Khanna [8], and in Alpaydin [9].

2.3 Machine Learning Models Fine-tuning

In order to fine-tune the Machine Learning models, several hyper-parameter values were evaluated by em-
ploying the grid search approach with standard 5-fold Cross-Validation on the training set. The optimum hyper-
parameter set for a model is chosen by evaluating the best R2 score value in the fine-tuning process. The evaluated
parameters’ set for the models are presented in Appendix.

2.4 Feature Selection Investigaton - RReliefF

Aiming to improve the evaluation metrics and the models generalization, a feature selection investigation was
employed. The chosen approach is the Regressional ReliefF (RReliefF) algorithm proposed by Robnik-Šikonja and
Kononenko [15]. According to Robnik-Šikonja and Kononenko [16], the RReliefF algorithm extends the Relief
algorithm for regression. A Relief-based feature selection algorithm calculates a feature score for each feature.
This score can then be applied to rank and select top scoring features. Usually, higher scores features represent
higher contribution features. So the feature selection starts by removing the lower score features.

The results were compared for: Scenario 1: evaluating the models with no feature exclusion; Scenario
2: evaluating the models excluding one feature with lower contribution; and Scenario 3: evaluating the models
excluding two features with the lowest contributions. The results were be compared for each scenario.

2.5 Model Selection Metric

The fine-tuned parameters of each model were employed on the training steps. After the models training,
we evaluated them by the coefficient of determination (also known as R-squared or R2) metric. Chicco et al. [17]
compared usual regression analysis metrics and discussed the advantages of the coefficient of determination as
a more informative metric, defined as: let n be the number of samples, ŷi be the ith predicted value and yi the
corresponding ith ground truth. Therefore, R2 is given by:

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2
, (1)

where y = 1
n

∑n
i=1 yi is the mean of the collected values. Chicco et al. [17] also explain that the coefficient

of determination can be understood as the variance proportion predictable from the independent variables in the
dependent variable. The best value is R2 = 1 and the worst value is when R2 tends to −∞.

2.6 Model Evaluation Metrics

In order to evaluate the quality of the results performed by the chosen model on the test set, we employed the
Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE) as evaluation metrics. More details about
these metrics can be obtained in Chicco et al. [17]. The R2 score was employed as a model evaluation metric as
well.
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3 Results and Discussion

The models were implemented with the open-source package Scikit-learn (Pedregosa et al. [18]) provided
for Python programming language. The first step we sort the feature importance score given by the RReliefF
algorithm. Table 1 shows the importance rank for each of the six features. Lower ranks indicate lower feature
importance.

Table 1. Features importance ranking.

Feature Depth Porosity Longitude Latitude Region Continental
Rank 6 5 4 3 2 1

After sorting the features by the RReliefF algorithm, we performed the grid search approach for the four
models in the three different scenarios: Scenario 1 using all six (6) features; Scenario 2 using five (5) features,
removing Continental feature; and Scenario 3 using four (4) features, removing Continental and Region features.
The optimized parameters obtained by the grid search approach under the three different scenarios are presented
for DTR and Ridge models in Table 2 and for SVR and MLP models in Table 3.

Table 2. Fine-tuned parameters for DTR and Ridge models

DTR

Scenario

Parameters 1 2 3

max depth 3 10 7
max features 2 4 3

min samples split 5 50 50
min samples leaf 5 15 15

Ridge

Scenario

Parameters 1 2 3

fit intercept False False False
alpha 4.0 4.0 6.5
solver ‘saga’ ‘sag’ ‘sag’

tol 0.01 0.01 0.01

Table 3. Fine-tuned parameters for SVR and MLP models.

SVR

Scenario

Parameters 1 2 3

kernel ‘poly’ ‘poly’ ‘rbf’
gamma 1.0 5.0 5.0
coef0 5.0 5.0 0.0
degree 2 2 -

C 5.0 5.0 1.0
epsilon 0.025 0.025 0.025

MLP

Scenario

Parameters 1 2 3

hidden layer sizes 150 100 200
activation ‘relu’ ‘relu’ ‘relu’

solver ‘adam’ ‘lbfgs’ ‘adam’
alpha 0.0005 0.0005 0.001

learning rate ‘invscaling’ ‘constant’ ‘constant’
learning rate init 0.01 0.001 0.001

momentum 0.9 0.5 0.1
nesterovs momentum True False False

beta 1 0.9 0.82 0.82

After grid searching the parameters, the models were trained. Table 4 presents the R2 score for the training
and validation dataset considering the three scenarios previously described. The validation R2 score is the mean
of the five scores obtained by the standard 5-fold cross-validation.

The best metric values presented in Table 4 were performed by the DTR model. So it was chosen as the most
appropriate permeability predictor.
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Table 4. Train and validation R2 score values for all models.

Model Scenario Train Validation

DTR

1 0.1945 0.1945

2 0.2429 0.1910

3 0.2713 0.1968

SVR

1 0.0911 0.0647

2 0.0402 0.0182

3 0.1793 0.0874

MLP

1 0.1692 0.1026

2 0.1575 0.1123

3 0.1222 0.0960

Ridge

1 0.0912 0.1056

2 0.0894 0.1060

3 0.0880 0.1055

After model selection, we performed predictions by employing the test dataset to the trained DTR model. Ta-
ble 5 presents the performance metric values performed by the model when using 6, 5 and 4 features, respectively.

Table 5. Performed metrics values for DTR model on test dataset.

Metric Scenario 1 Scenario 2 Scenario 3

MSE 0.0073 0.0068 0.0066

RMSE 0.0852 0.0822 0.0811

R2 score −0.0238 0.0473 0.0732

The results presented in Table 5 have particular characteristics. Firstly, one can see the negative value for the
R2 metric for Scenario 1. Usually, this means that the Machine Learning model is potentially poor to model the
target variable, as described in Pedregosa et al. [18]. However, the MSE and RMSE metrics are on the order of
0.0073 and 0.0852, which indicates plausible results. So, despite the negative value for R2, the model is performing
good predictions on the test dataset.

Secondly, the performance metric values improve as the number of features is decreased. The obtained results
are better for Scenario 2 and even better for Scenario 3. It indicates that the feature selection approach employing
the RReliefF algorithm is a good strategy. It decreases the model complexity and improves the results. So, Scenario
3 results in the highest positive value for the R2 score.

The feature selection approach is crucial for the achievement of good estimations. Using the most important
predictors variables as described in Scenario 3, we obtain the MSE and the RMSE metrics for the test set on the
order of 0.0066 and 0.0811, respectively. These results are supported by literature according to Male and Duncan
[19] since one of the most important physical properties for permeability prediction is porosity, which also depends
on latitude, longitude, and depth. Then, as a low-cost predictor for reservoir characterizations, these features can
perform reasonable estimations for permeability.

4 Conclusions

In this work we investigate the data quality in reservoir characterizations by modeling the horizontal perme-
ability using Machine Learning regression models. The hyper-parameters were optimized using the grid search
approach and the features were selected by the RReliefF algorithm. The best permeability predictions were per-
formed by the Decision Tree Regressor model, which performed MSE and RMSE on the order of 0.0066 and
0.0811, respectively, for the test set. We observe that the results were improved after selecting the most impor-
tant features. Since our results are very promising, we can conclude that the experimentally gathered data and
petrophysical logs can be used with Machine Learning models to provide low-cost estimators for reservoir charac-
terizations.
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However, the limitation of our study is the data depreciation, since our database is from 1990. The geological
characteristics of the reservoirs can be different nowadays. So, in order to propose more reliable results, we intend
to investigate the quality of our model predictions on more recent databases as future works.
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Appendix

This work employed the following scikit learn models:
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• sklearn.svm.SVR() 1

• sklearn.neural network.MLPRegressor() 2

• sklearn.linear model.Ridge() 3

• sklearn.tree.DecisionTreeRegressor() 4

Tables 6 and 7 present the parameters values evaluated on grid search approach for DecisionTreeRegressor
and Ridge models and for SVR and MLPRegressor models, respectively. More details about the parameters can
be obtained in Pedregosa et al. [18].

Table 6. Grid Search parameters for DTR and Ridge models

DTR

Parameters Values

max depth 2, 3, 4, 5, 6, 7, 8, 9, 10
max features 2, 3, 4, 5, 6

min samples split 5, 6, 8, 10, 15, 20, 25, 30, 40, 50
min samples leaf 2, 5, 8, 10, 12, 15, 20

Ridge

Parameters Values

fit intercept False, True
alpha 0.1, 1.0, 4.0, 5.0, 6.5, 10.0, 25.0, 50.0
solver ‘svd’, ‘lsqr’, ‘sparse cg’, ‘sag’, ‘saga’

tol 0.01, 0.001, 0.0001

Table 7. Grid Search parameters for SVR and MLP models.

SVR

Parameters Values

kernel ‘linear’, ‘rbf’, ‘sigmoid’, ‘poly’
gamma 0.1, 0.5, 1.0, 5.0
coef0 0.0, 0.1, 0.5, 1.0, 5.0
degree 2, 3

C 0.05, 0.1, 0.5, 1.0, 5.0
epsilon 0.025, 0.05, 0.1, 0.5, 1.0, 5.0

MLP

Parameters Values

hidden layer sizes 100, 150, 200
activation identity, logistic, tanh, relu

solver lbfgs, sgd, adam
alpha 0.0001, 0.0005, 0.001

learning rate constant, invscaling, adaptive
learning rate init 0.0001, 0.001, 0.01

momentum 0.1, 0.5, 0.9
nesterovs momentum True, False

beta 1 0.82, 0.9

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
2https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
4https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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