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Abstract. The offshore industry is responsible for most of the oil and gas production in Brazil. When the level of
complexity in this industry is high, it has been a precursor to new technologies in recent years. The main objective
of the present work is the development of a system for the detection and classification of failures in oil produc-
tion wells operated with elevation by gas lift. Stacked autoencoders are used and pattern recognition techniques
for fault classification, verifying performance metrics and applying cross-validation to check the generalization of
the models for the available observations. After the development of the classifiers, high recall values were ob-
tained (much higher than 0.88), which shows the great applicability of the proposed system in detecting failures in
offshore production wells.

Keywords: Fault detection; Oil well monitoring; Multivariate time series classification; Cross validation; Pattern
recognition.

1 Introduction

In the current scenario, the oil and gas industry has become more demanding in all areas of engineering,
including safety and production. Several aspects must be taken into consideration in the oil and gas area, as it is
a very complex industrial area, encompassing several engineering areas that are related in search of better quality
processes and products, adding technology and innovation over the years development, as addressed by [1].

The oil extraction industry is divided into two types of production, onshore and offshore. The first is based
on production on land, on the mainland. In the second modality, production is carried out offshore through oil
extraction platforms, normally far from the continent and in deep waters. The application focus of this work is
offshore oil and gas wells, that is, offshore wells.

Deepwater oil wells are classified in two ways, upstream and non-upstream. Non-emergent wells need meth-
ods to assist fluid flow (water, oil, gas and sediments). The surgers, on the other hand, are able to carry out the flow
of production fluids with their own pressure. In other words, in emerging wells there is a natural rise in fluids [2].

The process of artificial lifting by gas lift consists of the gasification of the production column using natural
gas in order to reduce the average density of the fluid being produced in the reservoir [3]. It is a complex process
and subject to several failures, whether in actuators and sensors, and also according to the characteristics of each
production well.

The occurrence of failures in oil production wells with gas lift can generate losses of thousands of dollars
for producing companies, in addition to the complex operation that follows such an occurrence, so that normal
operation is reestablished. The oil industry believes that prognosis of anomalies in oil-producing wells can help
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reduce maintenance costs, as well as prevent production losses and environmental and human life accidents [4].
One way to predict the occurrence of these failures is the implementation of pattern recognition systems

based on Computational Intelligence techniques. Failure detection seeks to expose possible deviations presented
in a process, based on its monitored variables. With the advent of measurement systems, process variable values
could be obtained and stored in large quantities and with greater precision, allowing for more efficient monitoring
[5].

As an example, [6] implemented a failure detection system in gas lift wells based on Artificial Immune
Systems, dividing into two operating patterns, normal and abnormal. [7] have adopted techniques such as PCA
(Principal Component Analysis) in the treatment of data from oil wells and the Random Forests classification
technique to detect hydrate accumulation failures in production lines or injection of emerging wells. these failures
cataloged by experts in the field of Petroleum Engineering. These works are similar to this article, as they all aim
to find disturbances that cause an abnormality in the operation of real oil production wells.

Several other Computational Intelligence techniques can be implemented to detect failures in industrial pro-
cesses. As shown by [8] which uses the output of two autoencoders as inputs to a multilayer perceptron network
(MLP) for detection of broken bars in three-phase induction motors. In the work presented by Wen et al. [9]
autoencoders were applied together as an MLP neural network in the detection of faults that cause unbalance in
marine current turbines.

This work aims to implement a pattern recognition system based on Computational Intelligence techniques,
making the process more analytical and less operational, which is one of the main objectives of Industry 4.0,
through disruptive technologies [10]. The main idea of the article is the identification of failures in production
wells with artificial elevation by gas lift. Where their origins are not known, but were determined through inference
from process operators due to production losses. These failures are distinct from the normal and stable operation
of a well, through data collected from an offshore oil extraction platform.

This work is structured as follows. In the next section, the gas lift oil extraction process and the theoretical
foundation of the computational tools used in the study are presented. Section 3 presents the work development
methodology. In Section 4 the results and discussions are presented. Finally, in Section 5, the conclusions are
presented.

2 Theoretical Foundation

2.1 Process

The Figure 1 shows a simplified diagram of the piping and instrumentation diagram P&ID (Piping and In-
strument Diagram) of a production well that uses artificial lifting by gas lift. Nascimento et al. [11] presents
variables and their units of magnitude in a table. Being the high pressure gas coming from the gas header on the
platform (instruments marked by 4) which is injected through the ring between the piping and the coating chain
until reaching an orifice valve located downstream at the bottom of the piping.

Figure 1. Simplified P&ID diagram of a production well operating with artificial elevation by gas lift

The fluid density is then reduced and the reservoir pressure raised enough to transport the mixture of oil, gas,
water and sediment to the platform. On the ocean floor, a set of valves and adapters known as a wet christmas tree
(WCT) control the flow of production to the platform. On the platform, an SDV (shutdown valve) is available to
interrupt production during an emergency situation and a choke valve, which regulates the production flow rate.
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Different flow dynamics are obtained depending on the gas rise pressure (PT4 and PT4a) and downhole pressure
(PT1) values.

The WCT is a subsea set consisting of several valves remotely operated by means of hydraulic commands,
which contain, for example, the TPT (Pressure and Temperature Transmitter) sensors and the sensor that measures
the annular pressure in the gas lift valve (PT2a). Pressures and temperatures are also measured as needed, as well
as upstream and downstream of the SDV, choke valve and gas lift injection valve.

The choke valve is a downstream flow control instrument. The gas lift valve, on the other hand, has the
function of controlling the pressure received from the inlet header. These high pressures come from the gas
compressors of the installation itself, these equipments mentioned in this paragraph are installed on the offshore
production platform. A more detailed description of this process is provided by [12].

2.2 Autoencoder

The autoencoder is an Artificial Neural Network (ANN) type that is formed by three layers, the encoder
consisting of the first two layers and the last two configuring the decoder, as shown in Figure 2. The autoencoder
has the function of mapping as close as possible the input to its output layer. Usually autoencoders have in their
hidden layer a lower number of neurons compared to their input and output layers. This is beneficial in relation
to reducing the dimensionality of the data, which makes the autoencoder use only the main characteristics of the
input data, in order to eliminate descriptors of little relevance to the models. In addition to reducing the dimension,
the autoencoder also transforms the data non-linearly, providing the maximization of differences between classes.

In Figure 2 the structure of an autoencoder is presented, where the input data are x = (x1, x2, ...xn), the
autoencoder output values are z = (z1, z2, ...zn), with n being the number of neurons in both the input and output
layers. The vector h = (h1, h2, ...hm) is the representation of the input x in the hidden layer after using a sigmoid
activation function (sf) and m is the number of neurons in the hidden layer. The equations that govern this
type of model are described by: eliminating descriptors of little relevance to the models. In addition to reducing
the dimension, the autoencoder also transforms the data non-linearly, providing the maximization of differences
between classes. The autoencoder optimization functions are presented in [13], [8], [14] and [11]

Figure 2. Structure of an autoencoder

3 Materials and methods

3.1 Experimental Data from a Well

Data acquisition was performed on an oil platform offshore, extracted from the plant information system PI
System by OSIsoft, widely used in the oil industry. PI System consists of a system that stores process plant infor-
mation. Through this system, data were collected in approximately 90 consecutive days, making up an observation
window of an oil production well. Data extraction took place between 12/06/2018 to 03/06/2019, totaling 129592
observations, with a sampling interval of 1 minute.

Sensors and actuators in the process plant are divided into top variables and bottom variables in the supervi-
sory. Since, for the top variables, their sensors are located on the oil production platform, whereas for the bottom
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variables, the instruments are installed on the seabed and in the production column, which may be more susceptible
to noise and failures .

Failure diagnosis can be identified from certain variables inherent to the process. These variables, which
change in the occurrence of failures according to the intrinsic characteristics of the wells, as well as the physical
and chemical conditions, can vary from well to well. For the well studied in this work, an undefined Soft Fault was
observed, that is, its origin is unknown, between 02/07/2019 and 02/19/2019, in which the fluid flow decreases,
slowly reducing production to complete cessation, as can be seen in Figure 3.

The characteristics of PDG pressure, temperature in the wet Christmas tree and temperature upstream of the
choke valve, in order to exemplify this type of anomaly with these three sensors, are presented in Figure 4, where
they indicate an abnormality in the behavior of the well described as below:

• PDG Pressure (PT1): tends to be high from the occurrence of a failure, due to an obstruction along the fluid
flow path, increasing the pressure in the production column;

• Wet Christmas tree temperature (TT2): tends to balance with the seabed temperature, in the case of fluid
flow failures, in deep water these temperatures normally vary between 2◦C and 6◦C;

• Temperature upstream of the choke valve (TT3): tends to equal the temperature on the surface of the sea;

Figure 3. Faults occurred between 02/07/2019 to 02/19/2019

Figure 4. Behavior of PT1 Pressure, TT2 Temperature and TT3 Temperature, respectively between 02/14/2019 to
02/21/2019

The sensor values are normalized in the figures to facilitate the visualization of the graphics and the classes
were defined as Failure and No Fail.

Labeling was proposed by the authors, according to information provided by offshore oil well production
operators, both field operators and control room operators (supervisory). Through experiences throughout their
careers in the oil and gas field. The failures were found in the production monitoring supervisory. In the Failure
class there are two patterns of occurrence, Abrupt Failure and Soft Failure. The number of observations for the
Non-Fail class is 126577 and 3015 for the Failure class, with Abrupt Failure and Soft Failure containing 2143 and
872 observations respectively. For the training and testing rounds, they were separated according to Table 1, taking
the smallest amount of data as a parameter. Information about classes is described as follows:
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• No Failure: in this class there is no variation that causes damage to the process or production, the operation
of the wells behaves normally, within a known stability;

• Abrupt Failure: this type of failure results from a quick event, which may be the actuation of a final element,
such as valves or process actuators. This type of failure can generate an alert in the platform supervisory, it is
quickly observed by the process operators, acting abruptly on the PT1 variable, PDG pressure, for example;

• Soft Failure: the occurrence of this type of failure is not noticeable by the process supervisory operators in
an agile way, the PT1 pressure rise happens slowly until an Abrupt Failure occurs.

Table 1. Division of classes in data windows

Data Fail (Abrupt Fail + Soft Fail) No Fail

Quantity 872+872 1744

3.2 Construction of Detectors

In the construction of the fault detectors (or models) two stacked autoencoders are used [8], the first has a
hidden layer with 9 neurons and the second with 5 neurons. The training of the first autoencoder is performed with
the 16 variables contained in [11] as input and the training of the second autoencoder uses the output of the hidden
layer of the first autoencoder as input. The hidden layer output of the second autoencoder is used as input for the
training of detectors, that is, the autoencoders are used as data pre-processing and dimensionality reduction from
16 to 5 input variables. The authors previously defined a reduction of characteristics of approximately 70% of the
initial amount of input variables, with the intention of reducing the computational complexity of the training of
detectors.

Figure 5. Process of building a stacked autoencoders model for fault classification in production wells with gas lift
lift

Figure 5 shows the construction process of the proposed model, where v = {PT1, TT1, ..., SDV P} repre-
sents the model’s input variables . v̂ = {v̂1, v̂2, ... ˆv11} are the variables input values estimated in the output of
the autoencoders, h1 =

{
h1
1, h

1
2, ...h

1
9

}
are the values of the vector h1 in the hidden layer of the first autoencoder

and ĥ1 =
{
ĥ1
1, ĥ

1
2, ...ĥ

1
9

}
the estimated output of h1 in the second autoencoder. The values of the hidden layer

of the second autoencoder are h2 =
{
h2
1, h

2
2, ...h

2
5

}
which are the input parameters of the detectors, which out-

puts the estimated class. Models without dimensionality reduction are also created, using the 16 available input
characteristics, in order to compare the computational cost and accuracy of the proposed technique.

Four models commonly used in pattern recognition are developed in this work: Decision Tree [15], Linear
Discriminant Analysis [16], Support Vector Machine [17] and K nearest neighbors [18]. The recall, precision and
f1-score [19] metrics are used to analyze the performance of the classifiers.

For the development of the proposed models, classifiers available in the Classification Learner tool, a Matlab®
software application, are used. For the creation of the models, the hyperparameters were adjusted in the tool itself,
being displayed in the Table 2.
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Table 2. Hyperparameters of the developed models

Models Hyperparameters

Decision Tree
Maximum number of divisions: 25

Impurity Criteria: Gini Index

Discriminant Covariance Structure: Total

SVM

Kernel function: Gaussian

Kernel Scale: 0.56

Multiclass Method: One-vs-One

k-NN

Number of Neighbors: 7

Distance Metric: Euclidean

Distance Weights: Equal

4 Results and Discussions

Most models satisfactorily classified the set of observations. The metrics recall, precision and f1-score of
the developed models, obtained from the test data, can be observed in Table 3 . This table presents the results of
the SVM and k-NN models with all 16 inputs, that is, without implementing the autoencoders, as these classifiers
obtained a superior performance in the f1-score metric.

Table 3. Values of the metrics for the test data

Models recall precission f1-score

Decision Tree 0.8233 0.7524 0.7863

Discriminant 0.8767 0.7412 0.8033

SVM 0.8234 0.8104 0.8297

k-NN 0.8946 0.8526 0.8731

SVM without reduction 0.8896 0.8752 0.8823

k-NN without reduction 0.9114 0.9049 0.9081

The k-NN models obtained, in general, better performances than the other techniques in the calculated met-
rics. Although the k-NN model without the application of autoencoders has achieved better metrics compared to its
version with dimensionality reduction, it is observed that in the recall item this difference in performance is even
smaller. For the problem of this work, this technique is more important because the presence of a false negative is
more problematic. The cost of a false negative is usually higher, and these costs being different, an abnormal event
classified as normal is more harmful than a normal event classified as abnormal.

In other words, in addition to the fact that the use of autoencoders does not greatly affect performance in-
dices, the dimensionality reduction provides a reduction in the training time of the models. When using the k-NN
technique, this factor is in the order of approximately eight times. The training rate is 12,000 observations per
second for the scaling model and 1,600 observations per second without scaling.

The models trained with the SVM technique, when compared to each other, are within six percentage points
of recall difference. Demonstrating again the effectiveness of autoencoders.

The classifiers based on decision tree and discriminant achieved good results. These classifiers obtained lower
results for the F1-score metric when compared to SVM and k-NN.

5 Conclusions

The failure detection models presented in this work satisfactorily classified the observations. In particular,
the k-NN model achieved the best results, especially in the recall metric, which is considered the most important
for this type of problem.

The cascade autoencoder network used together with other techniques for the classification of failures in oil
wells with artificial elevation by gas lift, has a great applicability in reducing the dimensionality of the data. The

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and
III Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



R. S. F. Nascimento, B. H. Groenner, R. E. V. Vargas, dos I. H. F. Santos

autoencoders made it possible to reduce the training time, keeping the performance of the models close when
compared to models without its use. This shows that their use can be viable in the petrochemical industry, where a
fast response time to abnormalities in the production process monitoring systems is needed. A more agile response
tends to reduce the complexity of direct actions to return to normality in the process plants.

For future work, it is recommended the application of other failure detection models, such as other techniques
for reducing data characteristics, verifying their performance compared to those developed. The use of the models
in other production wells with elevation by gas lift will allow the verification of generalization and understanding
of the results obtained, in addition to simulations and studies of applicability in real-time systems.
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