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Abstract. In systems identification, the use of auxiliary information configures a grey-box approach. This paper
describes a methodology to estimate model parameters including auxiliary information about the static behavior
of the system in a bi-objective approach and discusses a decision maker based on the auxiliary information. The
procedure can be applied to many model structures, such as polynomial models or multilayer perceptron (MLP)
neural networks, without the need of computing the model fixed points. The grey-box modeling procedure was
applied to design a soft-sensor for the downhole pressure of a real gas-lifted deep-water offshore oil well. To this
end, steady-state values of the downhole pressure were estimated from historical data from (almost) stationary
conditions. The available training and validation (dynamical) data had information over a limited operating range,
while test data had operating ranges not present in the training and validation data. The identified dynamic models
used only platform variables with a fixed MLP structure. The results indicate that the procedure yields suitable
models with good static and dynamic performance. Besides, the use of auxiliary information helped to find models
with better dynamical performance on operating regimes not originally represented in the dynamical data. Whereas
an identified black-box MLP model obtained a root mean squared error (RMSE) of 6.7 kgf/cm2 in a free-run
simulation over test data, the proposed approach achieved an RMSE of 3.7 kgf/cm2. This is very relevant for many
practical situations where the available dynamical data does not cover all operating regimes of the system. The
procedure described in this work can be applied with different model classes with greatly reduced computing time.
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1 Introduction

The main purpose of system identification is to build dynamic models based on experimental data. To this
end, related fields of knowledge like statistics, optimization, machine learning, have become important tools to
extract information about system dynamics from data. The use of artificial neural networks (ANN) for systems
identification is another successful tool [1] especially dealing with nonlinear systems due to its properties (e.g.
universal approximator) and good data fitting. In most cases, model parameters are estimated using just one source
of information: the dynamical data. This will be referred to as black box identification.

Determining a nonlinear model from a finite set of observations without any prior knowledge about the
system is an ill-posed problem [2], because a unique model may not exist, or it may not depend continuously
on the observations. This issue is worsened when dealing with noisy signals, non-informative data (e.g. non-
persistently exciting inputs) and high-dimensional systems. From an optimization point of view, the search space
and the number of local minima grows indefinitely, generating an extra challenge. Hence, physical insights about
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the system is almost a requirement to achieve suitable models.
The use of information apart from the dynamical data constitutes a grey-box approach. Here, the additional

information, referred to as auxiliary information, is assumed to be a set of steady-state data, although other alterna-
tives exist [3–6]. A central challenge in grey-box identification is how to efficiently employ auxiliary information.
This can be done in a number of ways by means of constraints, linguistic rules and others [7].

Grey-box identification was first implemented using linear structures [2–4], but it seems more powerful for
nonlinear structures, including polynomial models [5, 8–10], RBFs [11–13], fuzzy systems [7, 14, 15], multilayer
perceptron (MLP) networks [16–19]. Due to being nonlinear in the parameters, procedures for including auxiliary
information in MLP networks seems to be less explored, although some methods have been put forward for semi-
physical modeling [17, 19], for static information [20] (exact matching) and symmetry [18] for neural models.

Barbosa and colleagues [10] described another way to include auxiliary information, using bi-objective pa-
rameter estimation, where one objective is to improve the fitness to empirical data and the other is to improve the
fitness to the auxiliary information. This approach was implemented using polynomial models and compared to
another techniques (e.g. constrained polynomial models, ANNs). The method was applied also in [21, 22], using
MLP networks, and the second objective was the minimization of the root mean squared error (RMSE) of the
process static curve. The main drawbacks of those methods are the high computational cost, due to the calculation
of the model static curve to evaluate the objective function, and the use of evolutionary algorithms, due to the
non-convexity of the problem. Models that are linear with respect to the parameters lead to convex problems, that
are easier to deal with and the static curve can be sometimes determined analytically [5].

A method for estimating grey-box models was proposed in a previous work [21]. However, the procedure
generate a family of solutions that are not trivial to chose just one suitable model between them. The aim of this
paper is to discuss the choice of a solution using auxiliary information about static information in dynamic models.

This paper is organized as follows. The problem is defined in Section 2 and a background is provided
in Section 3. In Section 4 the proposed procedure is presented and the results and discussions are provided in
Section 5. Section 6 shows the main conclusions and suggestions for future work.

2 Problem Statement

The problem is to estimate a NARX (Nonlinear AutoRegressive with eXogenous inputs) model given by

y(k) = F (ψ(k − 1), θ) , (1)

where F ( . ) is a nonlinear function; ψ(k − 1) = [y(k − 1) · · · y(k − ny) u(k − 1) · · ·u(k − nu)]
T is the vector

of independent variables, nu and ny are the maximum lags of the input and output signals, respectively; θ ∈ Rq is
the vector of parameters to be estimated from measured data. The model structure, defined by F ( . ), is assumed to
be known. For a given model structure, θ is estimated from two sources of information: i) training data Zd; and
ii) auxiliary information Zs. Training data Zd is organized as

Zd = [ψ(k − 1) y(k)], k = 1, . . . , Nd : Zd ∈ RNd×(nu+ny) (2)

obtained from dynamical tests or historical data where the system is clearly in transient regime (non stationary) to
produce informative data. Ideally, it is obtained from persistently exciting inputs, like PRBS (pseudorandom binary
sequence) or noisy input signals, ranging over a wide operating range. However, in many practical applications the
available training data covers a narrow operating range, producing (black-box) models that have good performance
on that narrow range, but with poor generalization performance.

To improve generalization, an auxiliary source of information about the steady-state behavior of the system
Zs, expressed as a set of pairs (ū, ȳ), is used. For a pair given by (ū0, ȳ0), this means that if the input u(k) = ū0
is held for a sufficiently long time, then limk→∞ y(k) = ȳ0. Hence ȳ0 is an asymptotically stable fixed point for a
constant input ū0. Using this static information (ū0, ȳ0), the vector of independent variables ψ̄(k − 1) in steady
state is defined from ψ(k − 1) as:

ψ(k − 1) =
[
y(k − 1) · · · y(k − ny) u(k − 1) · · · u(k − nu)

]T
,

ψ̄(k − 1) =
[
ȳ(k − 1) · · · ȳ(k − ny) ū(k − 1) · · · ū(k − nu)

]T
,

ψ̄(k − 1) =
[
ȳ0 · · · ȳ0 ū0 · · · ū0

]T
. (3)

The dataset with auxiliary information about the steady-state behavior of the system is organized as

Zs = [ψ̄(k − 1) ȳ(k)], k = 1, . . . , Ns : Zs ∈ RNs×(nu+ny), (4)
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Figure 1. Datasets used to estimate grey- and black-box models. While black-box model uses only Zd to estimate
parameters, the grey-box take advantage of two sources of information: Zd and Zs.

where Ns is the number of static points in Zs.
The estimated model (1) should exhibit “good” dynamical and static behavior. It is known that a dynamical

dataset (e.g. Zd) contains some static information – the opposite is not true. Nevertheless, it is assumed that Zd

is less informative than Zs in terms of static behavior. A narrow operating range of dynamical data Zd is a typical
practical example of such a case, hence both datasets are complementary.

Figure 1 illustrates the information used in model estimation (1) using grey- and black-box approaches. The
aim is to estimate θ from Zd and Zs simultaneously.

3 Background

Neural networks models can achieve good performance in dynamical systems [1, 10, 21]. The NARX dy-
namical model considered in this work has the following structure:

y(k) = θ0 +

nh∑
i=1

θi tanh

(
θi,0 +

ny∑
j=1

θi,jy(k − j) +

nu∑
j=1

θi,(j+ny)u(k − j)
)
, (5)

where nh denotes the number of hidden layers, a structural parameter assumed to be known.
Using standard optimization algorithms (e.g., Levenberg–Marquardt) it is possible to fit model (5) to dynam-

ical dataZd, but typicallyZs is not be used during the training. To include steady-state information, a bi-objective
approach was proposed in [22], where θ̂ was estimated by minimizing

J1 =
1

Nd

Nd∑
k=1

√
[y(k)− ŷ(k)]2, J2 =

1

Ns

Ns∑
k=1

√
[ȳ(k)− ˆ̄y(k)]2, (6)

where J1 and J2 were computed over Zd and Zs datasets, respectively and ˆ̄y(k) is the the k-th fixed point of the
model for the input u(k) = ū(k), ∀k. An evolutionary algorithm was used for parameters estimation due to the
nonconvexity of the optimization problem.

The main drawback of the approach proposed in [22] is the explicit calculation of ˆ̄y(k). To see this, consider
the measured static point (ū0, ȳ0). In this case, the calculation of the fixed point of the model consists of finding a
ˆ̄y that satisfies the equation F

(
ū0, ˆ̄y, θ̂

)
− ˆ̄y = 0, in which F ( . ) is given by the right hand side of (5) with u(k−

j) = ū0, ∀j = 1, . . . , nu. Note that the solution of this equation is not trivial and may not be found analytically,
due to nonlinearity. Hence, ˆ̄y was obtained numerically by simulation. The computational cost to evaluate the
objective function and solve the recursive optimization problem implicit in ˆ̄y, i.e. ˆ̄y = F (F (F (. . . F (ū0, ˆ̄y, θ̂))))
is quite high. The method presented in the next section aims at circumventing this shortcoming.

4 Methodology

Black-box procedures estimate the parameters that minimize the cost function

Jd = ‖y(k)− F (ψ(k − 1), θ) ‖, (7)
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over the training data set Zd. Grey-box procedures would also use information in the static data Zs. One way
of doing this is by means of bi-objective where another cost function, J2 in (6), is simultaneously considered.
However, computing J2 requires finding the fixed points of the model, which is computationally expensive.

The key feature in the methodology is that the fixed points need not be explicitly computed neither analytically
nor numerically. Instead, the one-step-ahead error from a desired “static target value” ȳ(k) is minimized

Js = ‖ȳ(k)− F
(
ψ̄(k − 1), θ̂

)
‖. (8)

In the proposed algorithm, ȳ(k) is chosen to be a point on the static curve. In (8) the model fixed point is not
computed as for J2 (see Eq. 6). Fortunately, both J2 and Js reach minima at a fixed point [21]. While J2 only uses
static data (measured and from the model), Js uses both: the target is static but the model output is used at all time.
Hence there is no need to reach steady-state in order to use Js. It is worth noting that Js (8) resembles Jd (7) but
with the calculation done over Zs, instead of Zd. Despite of the simplicity, its great advantage is to permit the use
of ordinary minimization algorithms to also fit the steady state data. To estimate the parameters of the model using
both Js and Jd, a convex combination of such cost functions is used [10]:

Jsd = (1− λ)Jd + λJs, (9)

where the λ ∈ [0, 1] is the parameter that weights the balance between static and dynamical information. When
λ = 0 the estimation algorithm only considers the dynamical information (e.g. black-box approach) and the
addition of auxiliary information about the steady state increases as λ → 1. In the extreme case of λ = 1, the
parameter estimation totally disregards the dynamical information. Generally, competitive models can be achieved
by a suitable balance of the information in Zs and Zd.

The problem of finding the right balance for λ is addressed in this paper and it is known as a decision making
problem. For a given set of M solutions, denoted by Θ = {θi}, i = 1, 2, . . . ,M , the problem is to find a θi that
provides a suitable solution. Considering the plane formed by Jd and Js, a simple decision maker can be computed
as the minimal distance (L2 norm) to the ideal solution (the origin) as:

θa = {θ|
√
ed(θa)2 + Js(θa)2 <

√
ed(θi)2 + Js(θi)2,∀θi ∈ Θ}, (10)

where ed(θa) is the free-run simulation root mean squared error (RMSE) computed overZd. Note that this decision
maker use the auxiliary information in Js to select the solution.

A second decision maker is compared:

θb = {θ|
√
et(θb)2 + Js(θb)2 <

√
et(θi)2 + Js(θi)2,∀θi ∈ Θ}, (11)

where et(θb) is the free-run RMSE computed over Zt.
Other decision maker can be computed as the parameters in Θ that provide the minimum RMSE of the free-

run simulation over Zt. A decision maker, proposed by Barroso et al. [23], considers the free-run simulation error
over Zt, in which the minimally correlated with the model output is chosen.

5 Results and Discussion

Grey-box modeling is used to estimate the downhole pressure in deep water oil production plants, which
is an important measure for well productivity and operational management [21, 24–26]. These models should
represent well the dynamic and static behavior of the process in order to provide valuable information about long
service life of the oil well and to avoid harmful events like severe slugging [21]. The methodology presented in
Section 4 is used to obtain models with good balance between dynamic and static performance, by including the
auxiliary information in a bi-objective fashion. The auxiliary information (static points) was estimated manually
by inspection of the historical data. Figure 2 compares the stationary points (Zs) with the training (Zd) and test
(Zt) data sets.

Figure 3 shows instantaneous gas-lift flow rate (FT4, u1) and downhole pressure (PT1, y) over the training
and validation data. Like the previous numerical examples, the training and test data have information over a
limited operating range, while the validation data has operating ranges not present in the training data.
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Figure 2. Comparison between the output range, the downhole pressure, in datasetsZd, Zs, Zt andZv. Information
below 70 kgf/cm2 is present only in auxiliary information Zs and in the validation dataset Zv.
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Figure 3. Instantaneous gas-lift flow rate FT4 (u1) and the downhole pressure PT1 (y) from (a) training Zd; and
(b) validation Zv datasets. The fast oscillations are due to severe slugging. From [21].

The identified dynamic models use only platform variables [26, 27] with fixed MLP structure [21]

y(k) = θ0 +

10∑
i=1

θi tanh

(
θi,0 + θi,1y(k − 1) + θi,2y(k − 2) + θi,3y(k − 3)

+ θi,4u1(k − 1) + θi,5u1(k − 42) + θi,6u1(k − 136)

+ θi,7u2(k − 1) + θi,8u2(k − 42) + θi,9u2(k − 136)

+ θi,10u3(k − 1) + θi,11u3(k − 5) + θi,12u3(k − 22)

+ θi,13u4(k − 1) + θi,14u4(k − 5) + θi,15u4(k − 22)

+ θi,16u5(k − 1) + θi,17u5(k − 5) + θi,18u5(k − 22)

)
, (12)

that has 1 hidden layer with 10 nodes with activation function tanh(·), and linear function in the output node.
In (12), the signals ui(k) are variables available at the platform, and y(k) is the downhole pressure. For comparison,
a modelM0 was estimated using only the dynamic training data (Zd), without auxiliary information, in a black-
box approach with the Levenberg-Marquardt algorithm. The proposed procedure is applied in training model
family M3, with the Levenberg-Marquardt algorithm and different λ values (9), λ ∈ [0.02, 0.98]. The whole
training of the 201 parameters of models inM3 spend about 105 seconds.

Table 1 shows the RMSE over the validation dataset. The best model obtained by the proposed procedure
M3c achieved improved results (Figure 4). M3c reached better performance than the black-box model M0,
especially at operating points for which the only source of information was the auxiliary data (e.g. y ≈ 70).
This is very relevant for many practical situations where the available dynamical data does not cover all operating
regimes of the system. Obtaining static data from historical records is normally a straightforward task that may
help to find more representative models as shown in this real-world example.

Table 1 shows the RMSE over the validation dataset. t is relevant to point out that for none of the examples,
the best models were obtained for λ = 0 (which would mean to say that there was no gain in using static data). In
particular, for the downhole soft-sensor, the relative importance of dynamical and static data is very well balanced.
Hence it seems fair to conclude that the use of Proposition 1 makes good use of steady-state information while
keeping computational costs quite moderate.

The main advantage of the method lies in its simplicity of application, which allows the insertion of an auxil-
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Figure 4. Free-run simulation over validation dataset Zv. From [21].

Table 1. Root mean squared error (RMSE) of each model evaluated over validation dataset Zv in a free-run
simulation. Adapted from [21].

Model RMSE over Zv [26] Decision Maker

M0 6.7420 –

M3a 16.7807 (λ = 0.08) θa using Zd and Zs (10)

M3b 10.9986 (λ = 0.46) θb using Zt and Zs (11)

M3c 23.9496 (λ = 0.68) min corr. [23]

M3d 10.9986 (λ = 0.46) min RMSE over Zt

M3e 3.7285 (λ = 0.54) min RMSE over Zv

M3f 173.949 (λ = 0.98) max RMSE over Zv

iary information about steady state conditions in models with rather complex structures, such as neural networks.
The estimation was done with ordinary algorithms, as weighted least-squares (polynomial models) and backprop-
agation (MLPs models). We argue that the procedure can be applied to other nonlinear model classes as well.

6 Conclusion

This work presented a method for including auxiliary information about steady state behavior of the system in
parameter estimation stage, by adding a new objective function (weighted problem). The method allows to choose
the right balance between static and dynamic information.

The main difference between the proposed procedure and previous grey-box procedures is that here it is
not necessary to calculate or even estimate the fixed-points of the model. So, it was possible to add auxiliary
information in rather complex structures as dynamical neural networks – which can be very difficult to calculate
its fixed-points explicitly, leading to a lower computational cost of the procedure. This work opens the possibility
of applying the grey-box procedure to models of other classes, like auto regressive integrated moving average
(ARIMA), wavenets, radial basis functions (RBF), smoothing spline models (SSM), fuzzy models.
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