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Abstract. In this paper, we provided new end-to-end approaches to the task of seismic image segmentation, as
human analysis requires a lot of effort and time due to the large pixel dimensions. Given that seismic dataset
contains temporal information along its axis (inline and cross-line), we also proposed the use of recurrent neural
networks (RNN) together with convolutional layers. After several experiments, we found that the application
of crop and rescale (zoom) as a data augmentation technique, as well as the use of focal loss, shows significant
improvements in performance and training speed. Our best LSTM-based model achieved a very close to the best
one using fewer parameters.
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1 Introduction

In Oil and Gas industry reservoir characterization is one of the most crucial tasks in hydrocarbon exploration.
One of the stages of this process is the seismic interpretation, which consists of classifying three-dimensional
sedimentary units, called lithofacies or facies, from the analysis of geological patterns and characteristics. Due to
the large size of these three-dimensional blocks, as well as their complexity, manual facies classification requires a
great deal of effort and time on the part of specialists. That is why in recent years, different techniques have been
sought to automate this task, among which we can highlight the application of Deep Learning algorithms using
convolutional neural network (CNN), due to its spatial awareness and automatic feature extraction [1]. The first
papers using these techniques and seismic images began in 2017 given that they require a considerable amount of
labeled data, which presumably were not shared because of the difficulty and cost involved in obtaining them.

Initially, image classification approaches were applied. For example, Dramsch and Lüthje [2] compared pre-
trained known architectures as VGG16 [3] and ResNet [4], in addition to the one presented by Waldeland and
Solberg [5]. Later on, different studies have raised it as a semantic segmentation problem, which in a few words
means the pixel-level classification. Zhao [1] proposed to use the encoder-decoder architecture, and compared it
with a patch-based model, where the inference represented only the pixel value of the center of the patch, and
concluded that his proposal provides better classification quality. On the other hand, Civitarese et al. [6] designed
custom models, which were called Danet. These were also encoder-decoder type, although residual units were
also used [4] from which it was observed that their Danet-FCN2 model had the best balance in performance and
training speed. For that work, it was used datasets annotated by specialists [7, 8].

To promote research in this task, Alaudah et al. [9] made available an annotated dataset, obtained from the
well-known F3 block. In addition, metrics were defined and a benchmark was established using encoder-decoder
networks, in order to compare possible future approaches. Up to now, different works have been developed to
overcome the results [10–12], of which we can highlight our previous work [13] as it achieved great performance
using optimization techniques as well as the application of Common Field Pattern (CRF) as post-processing.
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Since seismic images have a temporal behaviour because they are generated in sequence as a function of
depth, we can use Recurrent Neural Networks (RNN) such as Long Shor-Term memory (LSTM [14]) as it has
shown great performance on sequential data. For instance, Shi et al. [15] proposed convolutional LSTM (Con-
vLSTM) which uses CNNs insted of a fully connected layer in each LSTM cell. Then there were variants such
as those proposed by Song et al. [16] who used Bidirectional layers and multi-scale pyramidal architectures for
Object Detection, but with a many-to-one (N-to-1) approach. Finally, Chamorro Martinez et al. [17] implemented
a many-to-many (N-to-N) configuration for multitemporal remote sensing data, which showed considerable im-
provements.

This work seeks to establish more advanced benchmarks of the dataset presented by Alaudah et al. [9] using
new techniques such as the implementation of the N-to-N approach proposed by Chamorro Martinez et al. [17]
in UNet-based models. We divide this work into six sections: Section 2 presents the architectures used to train
our models; Section 3 describe the public dataset Netherlands F3 block as the pre-processing procedure. Subse-
quently, Section 4 explains the training parameters and some more details for post-processing; Section 5 shows
and discusses the experiment results; and finally, Section 6 presents the conclusions.

2 Deep Network Architectures

As shown in our previous work [13], the models based on UNet architecture [18] gave best results for seis-
mic facies segmentation. Then, we have implemented variants to UNet such as adding atrous convolution to the
bottleneck to extract features at different scales, such as in areas where the classes are very thin. Since our data are
made up of sequential images, we found it very appealing to apply Convolutional LSTM, which has shown great
information retention capacity for temporal images. Further details will be explained in the following subsections.

2.1 UNet

This topology is made up of two paths. The first one is called encoder and is in charge of extracting the
image features while downsampling the image using pooling layers. In our implementation we use blocks with
two convolutional layers, each followed by a Batch Normalization layer and ReLU activation. The second path is
known as decoder and its function is to recover the original dimension (upsampling), with the number of channels
equal to the number of classes of the target image. In our design we use transpose convolutions, which performs
the same function of upsampling but with trainable parameters, which give more flexibility to this task. Something
very important to highlight in this architecture is the use of skip-connections whose function is not to lose feature
map information when concatenating them in parallel.

2.2 Atrous UNet

The implementation of atrous convolution allows us to enlarge the field of view of filters to incorporate larger
context as Chen et al. [19] explained. There are different ways to apply it to the UNet architecture, but the one used
by us was presented as a solution1 for a image segmentation competition on Kaggle platform2, where it reached
third place. The UNet with Dilated Convolutions or Atrous UNet (as we called) was also used by Piao and Liu [20]
for satellite image segmentation. It consists of the use of several dilated or atrous convolution layers with different
rates in bottleneck block. For the incorporation of these dilated convolutions, two modes were proposed: in series
or cascade, and in parallel. In both cases, the bottleneck output is represented by the sum of the resulting feature
maps.

2.3 Bidirectional UNet ConvLSTM (BiUNetConvLSTM)

As mentioned, the idea of applying convolutional LSTM was generated from the fact of using temporal
images. In our first attempts we tried simple versions such as fully convolutional LSTM networks, varying the
number of time-steps, but the results were much inferior to those obtained with the previous models. Inspired by
Chamorro Martinez et al. [17], we decided to use a UNet-based model for sequential images, where the bottleneck
was replaced by a Bidirectional ConvLSTM layer. In addition, we took the many-to-many (N-to-N) approach,
where the number of timesteps of images at the input is maintained at the output. Since the training time increased

1https://github.com/lyakaap/Kaggle-Carvana-3rd-place-solution/
2https://www.kaggle.com/c/carvana-image-masking-challenge
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considerably, we decided to reduce the number of convolutional layers to only one per block. For this model,
Average Pooling was empirically selected as downsampling operator.

2.4 Atrous Bidirectional UNet ConvLSTM (BiAtrousUNetConvLSTM)

This architecture was born from the union of Atrous UNet and BiUNetConvLSTM. Instead of using a simple
Bidirectional ConvLSTM in the bottleneck, several Atrous ConvLSTM were implemented following the same
idea of Atrous UNet, thus also resulting in the two mentioned modes (parallel and cascade). Figure 1 shows the
parallel mode of this architecture, although we can also use it to clarify the neural networks mentioned above. For
example, Atrous UNet differs from this one in that the input is only one image, and the bottleneck is composed
only of Convolutional layers with dilated rates. The Table 1 specifies the number of trainable parameters for each
architecture described.
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Figure 1. Representation of the architecture Atrous Bidirectional UNet ConvLSTM (BiAtrousUNetConvLSTM).

Table 1. Number of trainable parameters.

Model name UNet Atrous UNet BiUNetConvLSTM BiAtrousUNetConvLSTM

Millions of parameters 8.6 12.2 2.2 5.6

3 Seismic Dataset

The dataset used was the Netherlands F3 block, which is a fully-annotated 3D geological model open-sourced
by Alaudah et al. [9]. They defined six classes, where each one represents a facies with the exception of one that
is the union of two facies, Rijnland and Chalk, because they found it difficult to define the limits between them.
The three-dimensional block consists of 600 inline and 900 crossline sections, where inline refers to the direction
in which the data were acquired; and crossline, its perpendicular direction. In order to get a model that generalizes
correctly, ranges were defined to split the data in one block for training and two testing blocks.

The Figure 2 shows the sections that were defined to separate the dataset, as well as the six classes with
their respective legends. These three blocks can be obtained from a open repository 3 in an easy-to-access format.
Table 2 details the percentage of each class in the training and test blocks, as well as in the totality, where a clear
problem of unbalanced data is exposed. From this table we can also highlight that the facies Scruff is most present
in test set 2.

3https://github.com/yalaudah/facies_classification_benchmark
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Rijnland/Chalk
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Lower N. S.

crossline inline

Figure 2. Netherland offshore F3 block in the North Sea, where the six labels are shown.

3.1 Dataset Preparation

After the split, our training dataset is a block of dimension 401× 701× 255. As a good practice in machine
learning, it is recommended to reserve a part of the training dataset to validate the results, known as validation
set. To perform this separation, the technique applied in [6] was used, which consists of dividing the block into n
groups, and then taking the first sections of each group to cover 70% for training and the remaining part for vali-
dation. This way of separating the data gives us a greater certainty of obtaining sections with a similar percentage
ratio of pixels of classes than doing it randomly. In this work, we divided in ten groups for both inline and crossline
directions.

Our data generator was configured to deliver the sections in both directions alternately during training. The
use of both sections is justified in that the test sets are continuations of the training set in both axes. The data gener-
ator was implemented to accept different number of timesteps for ConvLSTM-based models. This implementation
configured for only one timestep can be used for the first two architectures.

Since all the models used are based on UNet, our data generator resizes the dimensions of the sections to
sizes that are divisible by 16, in order to avoid sizing problems in pooling layers where dimensions are halved.
Thus, there were inline and crossline sections of 688× 256 and 400× 256 pixels, respectively on training set.

Table 2. Percentage of pixels from different classes in each dataset [13]

Zechstein Scruff Rijnland/Chalk Lower N. S. Middle N. S. Upper N. S.

Training set 1.50% 3.27% 6.64% 48.59% 11.88% 28.09%

Testing set 1 1.85% 17.08% 6.95% 45.17% 9.72% 19.19%

Testing set 2 2.72% 0.78% 4.99% 57.20% 10.16% 24.13%

Total 1.87% 6.3% 6.35% 49.62% 10.94% 24.91%

4 Experiments

If we add the number of sections in both axes, we only have 1102 images, which is a relatively small number
of samples considered for a deep learning problem. To increase this number (data augmentation), we applied
random zoom operation (crop and re-scale) as in [13] as it proved to be very helpful to classify the thinner areas
belonging to facies such as Middle North Sea (Middle N. S.), Rijnland/Chalk and Scruff.

To perform the experiments and avoid the class imbalance problem between the majority and minority classes
(see Table 2), we set different loss function such as categorical cross-entropy and its weighted version. It was also
used the categorical focal loss Lin et al. [21], since it gave the best results in our earlier work, in addition to a
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higher speed of convergence in training. The main characteristic of this loss function is that it concentrates on the
most difficult pixels to classify, which are generally found at the boundary between facies.

In the RNN-based model, we tested varying the fixed size window of our sequenced images with values
between 2 and 10, since higher values resulted in very slow training. In addition, as part of our experiments, the
N-to-1 approach was also tried, however, it did not show any improvement, so we preferred to avoid showing the
results.

All models were implemented using the Keras framework, for different configurations, both in the number of
traditional convolution filters and within ConvLSTM cells4. We trained them in a GPU Nvidia Volta V100 using
the Adam optimizer [22], with a learning rate that starts in 1e − 04 and is reduced by a factor of 2 each time the
loss stopped improving after five epochs. The training stopped if there is no improvement in ten epochs (early
stopping).

Table 3. Results of models when tested on both test splits of the dataset.

Model PA
Class Accuracy

MCA FWIU
Zechstein Scruff Rijnland/Chalk Lower N. S. Middle N. S. Upper N. S.

Alaudah et al. [9] 0.905 0.602 0.674 0.772 0.941 0.938 0.974 0.817 0.832

UNet [13] 0.939 0.723 0.817 0.797 0.981 0.916 0.972 0.867 0.891

Atrous UNet [13] 0.943 0.764 0.82 0.774 0.986 0.902 0.981 0.871 0.895

BiUNetConvLSTM 0.936 0.66 0.731 0.798 0.987 0.932 0.976 0.847 0.884

BiAtrousUNetConvLSTM 0.942 0.595 0.825 0.789 0.987 0.916 0.977 0.848 0.894

5 Results

Inference was performed along the inline and crossline sections, where probabilities were averaged in both
directions. The metrics used were pixel accuracy (PA), class accuracy (CA) for each class (facies), mean class
accuracy (MCA) and frequency-weighted intersection over union (FWIU), which is a more suitable multi-class
unbalanced version of the well-known mIoU (mean intersection over union) since it uses the pixel frequency as
weights in a weighted average.

As it could be observed in Table 3, the Atrous UNet still has the best results. However, since the performance
of BiAtrousUNetConvLSTM is very close to that of Atrous UNet, we can say that it is a technical tie considering
that a smaller number of trainable parameters were used. Unfortunately, this cannot be said between UNet and
BiUNetConvLSTM, although they are still great results compared to the paper that shared the dataset.

Not surprisingly, the most difficult facies to predict are those with the fewest number of pixels (Zechstein,
Scruff and Rijnland/Chalk). Added to this is the complexity involved in defining the boundaries between these
facies. For example, in the inline 200 of the testing set 1, which is showed in the Figure 3, the facies Rijnland/Chalk
is so thin that it can easily be confused with the other adjacent facies.

Since in both cases, the Atrous version gave better results, we can say that the implementation of this special
bottleneck achieved its goal of extracting features at multiple scales. On the other hand, although the LSTM
versions did not manage to outperform the normal ones in their entirety, they did not require as many parameters
as their counterparts since the number of convolution layers was reduced by half.

Another point to mention is that in the two best inferences in Figure 3 we can perceive small inconsistencies
of misclassified pixels surrounded by a large number of neighbors belonging to the correct class. To solve that
problem there are several algorithms such as Conditional Random Fields (CRF) that allow to reclassify pixels
according to their neighbors. As in our previous work, we applied CRF to the models, however, it showed no
improvement in the LSTM-based models. This can be explained in that these models already consider information
from neighboring zones along their timesteps.

6 Conclusions

In this work we implemented new models based on LSTM to observe its performance in the semantic seg-
mentation of seismic images for facies classification, since it is characterized by a good performance in problems
involving samples with temporal behavior. The results of our best LSTM-based model were very close to the
Atrous UNet architecture, using fewer parameters. These results were achieved thanks to the combination of

4https://github.com/mkl04/Semantic_Segmentation-Seismic_Images
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(a) Seismic image (b) Ground Truth

(c) UNet (d) Atrous UNet

(e) BiUNetConvLSTM (f) BiAtrousUNetConvLSTM

Figure 3. Results on inline 200 from test set #1.

different techniques such as the use of atrous convolutions in the bottleneck, the application of zoom as data aug-
mentation and the implementation of focal loss. As part of the continuous improvement, we tried using CRF for
the correction of pixel inconsistencies, but it showed no improvement. We can conclude that this is because the
near pixel information was already considered when using LSTM cells as part of the training.

After the implementation of different types of architectures, we can say that there are still a variety of config-
urations of deep learning techniques that will help us to better model the facies classification.
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