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Abstract. In-situ combustion is a medium and high viscosity oil recovery technique. In this work, a mathematical
model was proposed describing the in situ combustion technique. Also, the study of the existence and uniqueness of
the solution using traveling waves is presented. Unlike previous works, we use the Ideal Gas Law and the fractional
flow theory, resulting in a more realistic model. This physical phenomenon is described by a mathematical model
composed of three partial differential balance equations: energy balance, the molar mass balance of gas, and the
molar mass balance of oil.
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1 Introduction

Several techniques for the Enhanced Oil Recvery (EOR) are developed to reduce the impact of the produc-
tion decline. In particular, the in-situ combustion technique consists of injecting the oxygen-containing gas, air,
or the enriched air into the reservoir. These gases react with crude oil creating a high-temperature combustion
zone, generating combustion gases resulting in a heat front which propagates through the reservoir decreasing the
gas viscosity and improving the oil recovery factor. There are several mathematical works addressing this phe-
nomenon. Due to the complexity of the problem, a significant number of them address the filtration combustion
(Aldushin et al. [1]], Chapiro et al. [2], Zavala and Chapiro [3], Ghazaryan et al. [4]), i.e., instead of mobile oil
phase, the authors consider immobile fuel. Others address the mobile fuel phase (Gargar et al. [5], de Assis et al.
[6]). Unfortunately, these works do not consider realistic fractional flow functions and neglect gas compressibility.

To model the in-situ combustion, in the present work, we consider a long cylinder of porous rock, ther-
mally insulated throughout the lateral area and containing oil. Diffusion is neglected following some studies,
which show that simplified models neglecting diffusion still present qualitatively acceptable solutions (Zavala and
Chapiro [3]], Chapiro and Marchesin [7]). The model is described by a system of balance equations corresponding
to fuel density, oxygen density, and enthalpy.

As appeared in experiment (Gargar et al. [8]) and numerical simulations (da Silva Pereira and Chapiro [9])
there is a stable combustion front in this type of combustion process. This observation motivated several works
looking for the solution of the model in the form of traveling waves. There exist two commonly used methods
for that. The first method considers that the reaction ceases when the temperature drops to negligible values, see,
for instance, (Aldushin et al. [1]], Gargar et al. [5]) and references therein. The second method considers that the
low-temperature reaction is not negligible; in this case, a long reaction tail may appear, (Chapiro et al. [2]]). We
follow the the second approach as more accurate from the mathematical point of view.

In summary, the idea of this work is to present the first steps in the mathematical analysys of a model that
generalizes (Gargar et al. [5]) and (de Assis et al. [[6]) by considering gas compressibility and fractional flow curves
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described by Corey-Brooks model (Corey [10]).

This paper is divided into five sections. Section 2 presents a brief introduction to the fractional flow theory,
addresing relative velocities of the two-phase fluid and explaining some simplifications used further. In Section 3,
the physical model is presented with the simplifications necessary to obtain its dimensionless form. In Section 4,
we show the necessary and sufficient conditions for the existence of the solution in the form of a traveling wave
for a particular case. Finally, Section 5 presents some conclusions.

2 Fractional flow theory

The standard way to model the one-dimensional two-phase flow displacement in porous media is described
by the Buckley-Leverett theory (Buckley and Leverett [[11]). In the present model we consider that the saturations
(relative volume occupyied by fluid) is never zero, since a portion of residual oil (gas) is always kept in pores. In
other words, after the injection, the fluid cannot be completely removed, so that its saturation will never be zero.
Thus, the interval in which the oil saturation varies is [So,, 1 — Sg.], where S, is the residual gas saturation and
Sor is the residual oil saturation. We consider saturated porous medium: S, =1 — S,,.

The fractional flow of a phase is defined as the flow of this phase in relation to the total flow of fluids being
produced. Thus, the functions that describe fractional flows of oil ( f,) and gas (f4) can be defined as:

Ao )
fo= | fg—AO+Ag

D

where A\, and ), are oil and gas mobilities. Note that mobility depends on the relative permeability, commonly
described by the Corey-Brooks model (Brooks and Corey [12]). For determine the flows fo and f, is considered
the oil viscosity p, and gas viscosity p, and following (Gargar et al. [3]) for T' = 273 K results:

fg =0.016,  p, = 1.297. )

In (de Assis et al. [6]) is considered constant relative permeabilities and in this work the relative permeabilities of
oil k,, and gas k,, are used following the Corey-Brooks model, (Corey [10]):

kro(S,) = (1 — S,)2, krg(So) = 0.6(S,)%. 3)

The fractional flows holds on the relationship f, 4+ f; = 1. Thus, the Darcy velocities of oil and gas phases are
given by:

Up = Ufo, Ug = ufy 4)

therefore u, + uy, = u, where u is the Darcy velocity for mixture composte by oil and gas. The fractional flows
(see Fig.|I)) of oil and gas are given by:

0.009652 1.297(1 — S,)?

_ S,) = . 5
0.009652 + 1.297(1 — S,)2’ Ja(50) 0.009652 + 1.297(1 — S,)2 )

fo(So)

3 Mathematical model of the in-situ combustion process

The model proposed in this paper is similar to the models presented in Gargar et al. [5] and in de Assis et al.
[6]. In this paper we neglect diffusion (capillary) effects. It is assumed one-dimensional flow, with air (oxygen)
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Figure 1. Fractional flow for oil f,(.S,) and gas f,(.5,)

injected to the left of a porous rock cylinder containing a non-reactive gas and a mobile fuel. The model with time
coordinate ¢ and space coordinate x and main variables 7" (temperature), .S, (molar concentration of oil), Y (molar
concentrarion of oxygen) is composed of the equations of heat balance, eq. (), molar balance for oxygen, eq. (7)
and molar balance for oil, eq. (]g[):

CmatT + 90395 (CopoSOUO(T - Tres)) = QTYSOPoWrgaa (6)
00 (Y Sgpg) + 002 (Y Sgpgug) = —wpp,Y SoW, @)
Sﬁat(poso) + Soar(posouo) = *SDSOPOYWM (8)

where w is a stoichiometric coefficient bettwen the mol of gas and the mol of oil. Following de Assis et al. [6] and
Gargar et al. [3]], the reaction velocity W, (s~!) is given by Arrhenius law:

—-E
W, =k, ea:p(RiTT) &)

where all parameter name and values are given in Table [T]

3.1 Dimensionless model

For a better analysis of the problem, some dependent and independent dimensionless variables (denoted by
bars) were introduced as dimensions and reference quantities (indicated by stars)

r - x n T-T * * * x* — 14 *
t:tjv aj:;v esza T :Tres X :L'r657 t :;7 p:p%7 P = Pg, (10)

Therefore, the system of equations eq. (6), eq. (7) and eq. (8) are written as:

¢ + a10z (S, f,0) = bl(Soi)tb, (1)
g
([ Sy (Syfa\ _ Sy
at(eH)jLagaw(@H)_b2(SOSg)<1>, (12)
S
0¢(So) + 4305(Sofo) = b3(555*) P, (13)
g
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Table 1. Dimensional parameter values for in situ combustion

Symbol Physical quantity Valor Unit (SI)
Thres Initial reservoir temperature 273 K
Chm, Rock matrix heat capacity 2 x 10° J/(m3K)
Q- Enthalpy of immobile fuel at T4 4.4 x 10° J/mol
E, Activation energy 58747 J/mol
kp Frequency factor for the reaction 4060 1/s
R Gas constant 8.314 J/(molK)
© Porosity 0.3
P Pressure in the reservoir 1013250 Pa
Po Average molar density of oil 1366.88 mol /m3
Co Molar heat capacity of oil 1097.4 J/(molK)
U Darcy velocity of oil and gas mixture 8.0 x 1077 m/s
Cq Molar heat capacity of gas 27.42 J/(molK)
Pao Densidad molar inicial del gas 401 mol /m?
Lyes Reservoir length 2x 1071 m
where:
Sy, =YS,. (15)

4 Analysis of solution by traveling waves

To determine the solution of the proposed model in the form of a traveling wave, we perform a change of
variables (t,z) — (¢,£), where £ = x — ct, ¢ > 0 and assume that the solution in the new (traveling) variables
does not depend on ¢. Defining dimensionless constants:

t _ PCopo P
—u, h = ,
x* Cm RT*p*

v =

=g, (16)

omitting the bars in equations eq. , eq. (12), eq. , and indicating the derivative in £ as prime (d¢(-) = (+)"),
the system can be written as:

—c(0)" 4+ vh(S, f,0) = bl(So%)é, (17)
g
_ Sy Syfq ’_ i
C(0+1) +U(0+1) _b2(SOSg)(I)’ (18)
—e(S0) 0 (Suf) = by(So 2. (19)
g

In order to determine the equilibrium states of (.S, S, ), the right side of the equations eq. - eq. (19), must be
zero and this implies that:
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R_0, (20)
Replacing the eq. (T9) into eq. (I8), results:

[i[vf — ]+ bS,vfo — ¢ g 0

o+1-"7 ’

21

b
where b = ,bﬁ_ Applying limit £ — F00 to eq. 1i and then isolating ¢, we obtain the traveling wave velocity:
3

o[vE - bsEfR(0"+)]
_ . 22)
YL _bSE(OL 1 1)

CcC =

From equation eq. (ZT)) we can obtain:

6+1 , YE
Sy = m(m[’l} — C] — bSO[’UfO — C})

(23)
Substituting eq. (I9) into eq. (T7) implies:
[(vhfoso - C)(g + E(Ufo - C)So]/ = 07 (24)
1 bl . . . . . L
where b = b Applying limit £ — Fo0 into eq. (24) we can obtain §~ and 6:
RQR R
eL::(1-—EELLgi)GR-+BS§(1-9LL), (25)
¢ c
beS, — bvf,S, — ch*
= . 2
o vhfyS, — ¢ (26)
From eq. it is possible to find an Ordinary Differential Equation (ODE) for (S,)":
b3S, ® —vf’S
= 2V o8 g — F(S,). 27
5, = B s, = F(S,) @)

The traveling wave solution of the system eq. (TI)-eq. (I3) must satisfy the ODE eq. (27) where 6 is defined in
eq. (26) and S, is defined in eq. (23) with assimptotic boundary conditions given by

. _ (gL oL oL . _ (pR QR ¢R
5Er_noo(ﬁ,Sy, So) = (07,5,,55), é1;1[{.10(9,5“7;,So) = (07,5,,55)- (28)
Proving the condition eq. (Z8) can be really challenging even for much simpler models, (Chapiro et al. [2],

Ghazaryan et al. [4]). We proceed by analysing a particular case in the next section.
4.1 Particular case analysis

As the starting analysis we consider the boundary states:

CILAMCE 2021-PANACM 2021
Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering and

1l Pan-American Congress on Computational Mechanics, ABMEC-IACM
Rio de Janeiro, Brazil, November 9-12, 2021



Analysis of solution by traveling waves

Yyl =1, 6% =0, St —0.9. (29)

o

As we proved that S& = 0 and 5’5 = 0, then from eq. we calculate # and the velocity for traveling wave c:

6% = 0.0826, ¢ = 0.523. (30)

For this case the phase portrait of eq. (27) is one-dimensional and depends exclusively of the sign of the flux
function F'(S, ), which is plotted in Figure As one can see it is strictly positive.

F(So)

20 1

10 1

0o 02 04 0.6 0a
50

Figure 2. Flow function F'(S,) for the paramenter values given in Table

As we considered that SL' < ST, the phase portrait of eq. (27) is simple (see Fig. [2) and indicates the existence of
the traveling wave connection joining the limit states SZ and S’*.

—0—> —>— o
S," S}

Figure 3. Phase portrait of the system eq. , where 6 is defined in eq. and Sy, is defined in eq. .

5 Conclusions

This paper proposes a model of the in-situ combustion which generalizes the ones presented in the literature
by considers the molar density of gas dependend of temperature (compressibility) and realistic fractional flow
functions. Using the traveling wave hypothesis, the original system was rewritten as a system of ODEs. After
some manipulations we managed to ontain the traveling wave velocity and reduce the system to one contaning
two algebraic equations and one ODE. We managed to prove the existence and uniqueness of the traveling wave
solution for one set of the boundary conditions using semi-analytical approach. The analysis of the general solution
is part of the ongoing work.
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